第3号議案

冬季電力需給見通し報告書(案)(平成27年度)について

(案)

業務規程第26条に基づき、別紙の通り冬季電力需給見通し報告書(案)(平成27年度)をとりまとめたので本機関ウェブサイトにて公表することとしたい。

【添付資料】

別紙:冬季電力需給見通し報告書(案)(平成27年度)

以上

冬季電力需給見通し報告書(案)

(平成 27 年度)

平成 27 年 12 月 2 日

- はじめに -

当機関は、業務規程第26条において、全国および供給区域(以下「エリア」という。)ごとの電力需要に対する適切な供給力の確保状況等について検討・公表する旨を定めており、これに基づき今年度の冬季(12~2月)の電力需給見通しを公表する。

通常年度は、電気事業者の供給計画を取りまとめた結果に基づいて検討することとしているが、今年度は、一般電気事業者の供給計画において供給力が「未定」とされており、また電気事業者でない発電設備設置者^{※1}に供給計画の提出義務がないことから、供給計画のみに基づく検討が困難な状況にある。

そこで平成27年度夏季(7~9月)の電力需給については、独自の補足調査を行い、その結果を踏まえて電力需給見通しを公表した。このたび冬季(12~2月)についても、補足調査を行い、電力需給見通しを公表する。

本報告書では、電力需給検証小委員会^{※2}報告書の検証結果である一般電気事業者の電力需給見通しを 併記する。電力需給検証小委員会と当機関の見通しの前提として、厳寒時の一日最大需要電力を評価対 象としていることは同じであり、また一般電気事業者の供給力は共通の元データを用いている。

なお、電力需給検証小委員会では一般電気事業者の需給について、需要及び供給力共に発電端値(一般電気事業者の自社発電所で発電される電力と調達する電力の合計値、以下発電端という)を用いて検証している。一方、当機関の見通しでは、評価範囲をエリア全体とし、また、送電端値(自社発電所で発電される電力から発電所内で消費される電力を引いた電力、以下送電端という)を用いて検証している。上記2点が電力需給検証小委員会と異なる点である。

更に当機関の独自の調査として、エリアにおける最大電源ユニットが計画外の事象により停止した場合の評価を、地域間連系線を通じた近隣エリアからの電力融通を考慮して分析している。

- 目次 -

14	١.	4	· —
は	l٠	め	_

1.	前提条件	-															
	(1)	評価期間	•	•		•	•	•	•	•		•	•	•	•	•	1
	(2)	評価内容	•			•	•	•	•	•		•	•	•	•	•	1
	(3)	使用データ	•		•	•	•	•		•		•	•		•	•	2
2.	平成 27	年度冬季電力需給見通し															
	(1)	平成 27 年度 冬季電力需給バランス評価	•		•	•	•	•	•	•		•	•		•	•	3
	(2)	最大電源ユニット停止後の予備率	•		•	•	•	•	•	•		•	•		•	•	4
	(3)	電力需給検証小委員会との相違	•		•	•	•	•	•	•		•	•		•	•	7
3.	まとめ		•			•	•	•	•	•		•	•	•	•	•	9
>	別添資料	ļ															10

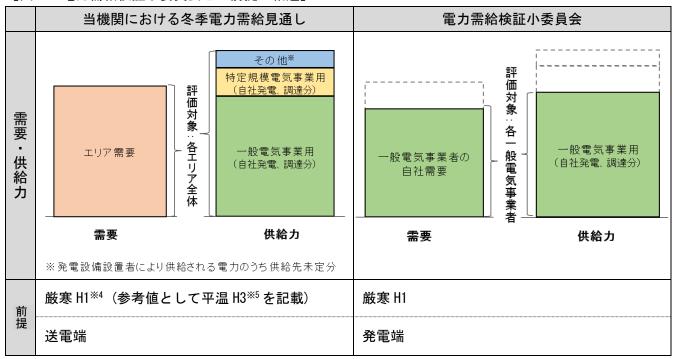
1. 前提条件

以下の前提条件のもと、冬季電力需給見通しの想定を行った。

(1) 評価期間

平成 27 年 12 月~平成 28 年 2 月

(2) 評価内容


以下に定義する需要と供給力を基に冬季の需給バランス評価及び最大電源ユニット停止後の予備率を算出し評価・分析を行った。

需 要…エリア全体の最大需要電力

供給力…各エリアの需要向けの供給力^{※3}(エリア外供給力を含む)および当該エリアに接続する 発電設備のうち供給先未定分の合計

当機関の評価方法は、厳寒時の1日最大需要電力(以下厳寒 H1 という)の送電端を用いる。 図1に当機関における冬季電力需給見通しと電力需給検証小委員会との前提の相違を示す。

【図1. 電力需給検証小委員会との前提の相違】

- ※3 供給先未定の供給力は当該接続エリアに計上したが、当該エリアで実際に供給されるとは限らない
- ※4 各月における厳寒時の1日最大需要電力
- ※5 各月における毎日の最大電力(1時間平均)を上位から3日取り平均した最大3日平均電力

(3) 使用データ

当機関は以下のデータを使用して、冬季電力需給見通しを想定した。

① 需要

・一般電気事業者から受領した平温 H3 時のエリア需要(送電端)を基に電力需給検証小委員会の報告徴収資料より、一般電気事業者各社の平温 H3 と厳寒 H1 の需要想定値(発電端)の 比率を用いて厳寒 H1 (送電端)に換算

② 供給力

以下3つを合算

- 一般電気事業者から受領した厳寒 H1 時の供給力^{※6}(自社、調達分)
- 特定規模電気事業者から供給計画にて受領した平温 H3 時の供給力*7(自社、調達分)
- ・ 発電設備設置者から受領した平温 H3 時の供給力^{※8} (供給先未定分、単機容量 11.25 万 KW 以上の電源が対象)

※6原子力については、営業運転開始済みの九州電力川内原子力発電所1・2号機のみを含む

※7、※8 特定規模電気事業者および発電設備設置者に関しては、受領済みの平温 H3 時の供給力を使用(厳寒 H1 時の供給力と大きな差異は無く影響は軽微と想定)

2. 平成27年度冬季電力需給見通し

(1) 平成27年度冬季電力需給バランス評価

エリア別の電力需給バランスについて、冬季 12 月、1 月、2 月の厳寒 H1 に対する予備率は最低のエリアでも 3.7%以上、50Hz 地域 *9 で 7.3%以上、60Hz 地域 *10 で 6.8%以上および沖縄を除く 9 エリア全体では 7.0%以上となり、電力需給検証小委員会が基準とする安定供給に最低限必要な予備率 3%以上を確保できる見通しである。

表1にエリア別の電力需給バランスを示す。

【表 1. エリア別の電力需給バランス】(厳寒 H1) *

▶ 平成 27 年 12 月

	北海道エリア	東北 エリア	東京 エリア	50Hz計	中部 エリア	北陸 エリア	関西 エリア	中国 エリア	四国 エリア	九州 エリア	60Hz計	9ェリア計
最大需要電力 (A)[万kW]	543	1,353	4,897	6,793	2,286	473	2,463	983	491	1,429	8,125	14,918
供給力 (B) [万kW]	621	1,471	5,584	7,676	2,453	529	2,652	1,099	513	1,556	8,802	16,478
予備力 (C)=(B)-(A) [万 kW]	78	118	687	883	167	56	189	116	22	127	677	1,560
予備率 (C)/(A) [%]	14.4	8.7	14.0	13.0	7.3	11.8	7.7	11.8	4.5	8.9	8.3	10.5

▶ 平成 28 年 1 月

	北海道 エリア	東北 エリア	東京 エリア	50Hz計	中部 エリア	北陸 エリア	関西 エリア	中国 エリア	四国 エリア	九州 エリア	60Hz計	9ェリア計
最大需要電力 (A)[万kW]	532	1,403	5,251	7,186	2,356	501	2,616	1,063	491	1,515	8,542	15,728
供給力 (B) [万kW]	612	1,531	5,564	7,707	2,523	541	2,734	1,158	532	1,638	9,125	16,832
予備力 (C)=(B)-(A) [万kW]	80	128	313	521	167	40	118	95	41	123	583	1,104
予備率 (C)/(A)[%]	15.0	9.1	6.0	7.3	7.1	8.0	4.5	8.9	8.4	8.1	6.8	7.0

▶ 平成 28 年 2 月

	北海道エリア	東北 エリア	東京 エリア	50Hz計	中部 エリア	北陸 エリア	関西 エリア	中国 エリア	四国 エリア	九州 エリア	60Hz計	9エリア計
最大需要電力 (A)[万kW]	532	1,391	5,251	7,174	2,356	501	2,615	1,063	491	1,511	8,537	15,711
供給力 (B) [万kW]	609	1,509	5,586	7,704	2,526	531	2,712	1,178	526	1,643	9,116	16,820
予備力 (C)=(B)-(A) [万kW]	77	118	335	530	170	30	97	115	35	132	579	1,109
予備率 (C)/(A)[%]	14.5	8.5	6.4	7.4	7.2	6.0	3.7	10.8	7.1	8.7	6.8	7.1

^{*}平成23年度並(北海道エリアについては平成22年度並み、東北及び東京エリアは平成25年度並み)の厳寒時における需給状況を想定

※9 北海道エリア、東北エリア、東京エリアをいう。

※10 中部エリア、北陸エリア、関西エリア、中国エリア、四国エリア、九州エリアをいう。

(2) 最大電源ユニット停止後の予備率

表 2 に最大電源ユニット停止後の予備率を示す。各エリアの最大電源ユニットの停止を考慮した場合でも、北陸エリアと中国エリアおよび四国エリアを除き供給力が最大需要電力を上回っている。また、北陸エリアと中国エリアおよび四国エリアを含み最大電源ユニット停止後の予備率が3%を下回るエリアにおいても、次の通り冬季12月、1月、2月の中で地域間連系線*の空容量およびマージンを通じた近隣エリアからの電力融通を考慮すると、供給力が最大需要電力見通しを上回り、電力需給検証小委員会が基準とする安定供給に最低限必要な予備率は3%以上を確保できる見通しである。

- ・北海道エリアは、北海道本州間連系設備から 12月、1月、2月の各月とも空容量1万kWおよびマージン60万kWを活用して電力融通が 受けられる。
- ・北陸エリアは、北陸関西間連系線および中部北陸間連系設備から 12 月は空容量 67 万 kW およびマージン 70 万 kW、1 月は空容量 60 万 kW およびマージン 70 万 kW、2 月は空容量 61 万 kW およびマージン 70 万 kW を活用して電力融通が受けられる。
- ・関西エリアは、中部関西間連系線と北陸関西間連系線と関西中国間連系線および関西四国連系 設備から
 - 1 月は空容量 512 万 kW およびマージン 80 万 kW、2 月は空容量 521 万 kW およびマージン 80 万 kW を活用して電力融通が受けられる。
- ・中国エリアは、関西中国間連系線と中国四国間連系線および中国九州間連系線から 12 月は空容量 513 万 kW およびマージン 30 万 kW、1 月は空容量 517 万 kW およびマージン 35 万 kW、2 月は空容量 512 万 kW およびマージン 35 万 kW を活用して電力融通が受けられる。
- ・四国エリアは、関西四国連系設備および中国四国間連系線から 12 月は空容量 51 万 kW およびマージン 93 万 kW、1 月は空容量 52 万 kW およびマージン 93 万 kW を活用して電力融通が受けられる。
- ・九州エリアは、中国九州間連系線から 12月は空容量 268万 kW、1月は空容量 270万 kW を活用して電力融通が受けられる。

【表 2. 最大電源ユニット停止後の予備率】(厳寒 H1)

▶ 平成 27 年 12 月

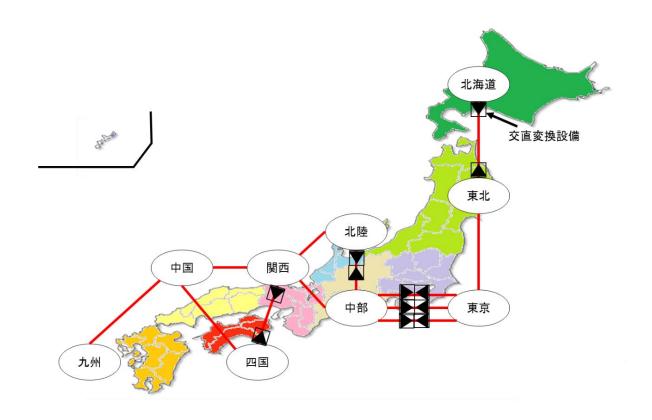
	北海道エリア	東北 エリア	東京 エリア	中部 エリア	北陸 エリア	関西 エリア	中国 エリア	四国 エリア	九州 エリア
最大需要電力 (A)[万kW]	543	1,353	4,897	2,286	473	2,463	983	491	1,429
最大電源ユニット [万kW]	66	58	97	95	64	86	95	66	85
最大電源ユニット 停止後の供給力(B) [万kW]	555	1,413	5,487	2,358	465	2,566	1,004	447	1,471
最大電源ユニット 停止後の予備力(C)=(B)-(A) [万kW]	12	60	590	72	-8	103	21	-44	42
最大電源ユニット 停止後の予備率[%]	2.2	4.4	12.0	3.1	-1.7	4.2	2.1	-9.0	2.9
地域間連系線の空容量※11 [万kW]	1	308	27	272	67	507	513	51	268
地域間連系線のマージン※11 [万kW]	60	60	150	105	70	80	30	93	0

参考

▶ 平成 28 年 1 月

		北海道エリア	東北 エリア	東京 エリア	中部 エリア	北陸 エリア	関西 エリア	中国 エリア	四国 エリア	九州 エリア
	最大需要電力 (A)[万kW]	532	1,403	5,251	2,356	501	2,616	1,063	491	1,515
	最大電源ユニット [万kW]	66	58	97	95	64	86	95	66	85
	最大電源ユニット 停止後の供給力(B) [万kW]	546	1,473	5,467	2,428	477	2,648	1,063	466	1,553
停」	最大電源ユニット L後の予備力(C)=(B)-(A) [万kW]	14	70	216	72	-24	32	0	-25	38
	最大電源ユニット 停止後の予備率[%]	2.6	5.0	4.1	3.1	-4.8	1.2	0.0	-5.1	2.5
>	地域間連系線の空容量※11 [万kW]	1	358	61	257	60	512	517	52	270
子 :	地域間連系線のマージン※11 [万kW]	60	65	150	110	70	80	35	93	0

▶ 平成 28 年 2 月


	北海道エリア	東北 エリア	東京 エリア	中部 エリア	北陸 エリア	関西 エリア	中国 エリア	四国 エリア	九州 エリア
最大需要電力 (A)[万kW]	532	1,391	5,251	2,356	501	2,615	1,063	491	1,511
最大電源ユニット [万kW]	66	58	97	95	64	86	95	66	85
最大電源ユニット 停止後の供給力(B) [万kW]	543	1,451	5,489	2,431	467	2,626	1,083	460	1,558
最大電源ユニット 停止後の予備力(C)=(B)-(A) [万kW]	11	60	238	75	-34	11	20	-31	47
最大電源ユニット 停止後の予備率[%]	2.1	4.3	4.5	3.2	-6.8	0.4	1.9	-6.3	3.1
地域間連系線の空容量※II [万kW]	1	293	6	254	61	521	512	52	269
が 地域間連系線のマージン※11 [万kW]	60	65	150	110	70	80	35	93	0

※11 当該エリアに接続する地域間連系線における、平日昼間の受電方向の値を使用(平成27年10月9日時点の系統情報公開システムより)

*図2に地域間連系線の名称を示す。

【図 2. 地域間連系線】

地域間連系線とは異なる供給区域を相互に接続する系統設備のことをいう。これにより 供給区域を超えた電力融通が可能となる。各供給区域内での供給力不足時等には、地域間連系線を 利用した電力融通により、電力需給のバランスが保たれる

連系線		区間·方	向		対象設備	直流∙交流
北海道本州間連系設備	順方向	北海道	\rightarrow	東北	北海道・本州間電力連系設備	直流
北海坦本州间廷示政備	逆方向	東北	\rightarrow	北海道	北海道 华州间电力连示战幅	旦川
東北東京間連系線	順方向	東北	\rightarrow	東京	相馬双葉幹線	交流
木 化 木 尔 时 庄 示 脉	逆方向	東京	\rightarrow	東北	作两次来针像	又加
 東京中部間連系設備	順方向	東京	→	中部	佐久間周波数変換設備 新信濃周波数変換設備	直流
大 次十时间是水改幅	逆方向	中部	\rightarrow	東京	東清水周波数変換設備	巨加
中部関西間連系線	順方向	中部	\rightarrow	関西	三重東近江線	交流
中间因四间连水 脉	逆方向	関西	\rightarrow	中部	二重术近江縣	文加
中部北陸間連系設備	順方向	中部	\rightarrow	北陸	南福光連系所、南福光変電所	直流
中即北陸间廷宋政備	逆方向	北陸	\rightarrow	中部	の連系設備	巨川
 北陸関西間連系線	順方向	北陸	\rightarrow	関西	越前嶺南線	交流
10 住民日间 生水脉	逆方向	関西	\rightarrow	北陸	及四月 月 月 水	文加
 関西中国間連系線	順方向	関西	\rightarrow	中国	西播東岡山線	交流
因四个国间建水脉	逆方向	中国	\rightarrow	関西	山崎智頭線	文加
 関西四国間連系設備	順方向	関西	\rightarrow	四国	紀北変換所、阿南変換所間	直流
因四四四间	逆方向	四国	\rightarrow	関西	の連系設備	巨川
中国四国間連系線	順方向	中国	\rightarrow	四国	本四連系線	交流
中国四国间建术脉	逆方向	四国	\rightarrow	中国	本四 建术脉	又加
中国九州間連系線	順方向	中国	\rightarrow	九州	 関門連系線	交流
中国ル州间建ポ稼	逆方向	九州	\rightarrow	中国		文加

(3) 電力需給検証小委員会の結果との比較

電力需給検証小委員会の検証結果では、今年度の冬季電力需給について「いずれの電力会社においても、電力の安定供給に最低限必要な予備率3%以上を確保できる見通しである」としている。

これに対し当機関の分析でも同様に、今年度の冬季電力需給について、各月の予備率が最低の エリアでも 3.7%以上、沖縄を除く 9 エリア全体で 7.0%以上を確保できる見通しを得た。

尚、発電端で検証している電力需給検証小委員会に対して、送電端を用いている当機関の評価では、一般電気事業者の発電所所内電力分が控除されるため、送電端を用いることは最大需要電力・供給力ともに値が小さくなる要素となる。一方で、一般電気事業者のみの需給バランスを評価対象としている電力需給検証小委員会に対して、当機関ではエリア全体の評価を行っているため、この分については最大需要電力・供給力ともに値が大きくなる要素となる。なお、エリア毎に電源構成の違いによる発電所所内電力や一般電気事業者以外の需要割合が異なることにより、エリア毎の電力需給検証小委員会に対する当機関の評価の増減は異なる。

表3および表4に電力需給検証小委員会の1・2月データと比較した当機関の分析値を示す。

【表 3. 電力需給検証小委員会の結果との比較(1月)】

本報告書では、電力需給検証小委員会報告書の検証結果を、参考として併記する。

▶ 経済産業省「電力需給検証小委員会報告書」より引用※12 (厳寒 H1)

	北海道電力	東北電力	東京電力	中部電力	北陸電力	関西電力	中国電力	四国電力	九州電力	9社計
最大需要電力 (A)[万kW 発電端	543	1,416	4,840	2,356	529	2,496	1,067	497	1,515	15,259
供給力 (B)[万kW] 発電端	622	1,516	5,150	2,496	567	2,604	1,151	535	1,634	16,275
予備力 (C)=(B)-(A)[万kW]	79	100	310	140	38	108	84	38	119	1,016
予備率 (C)/(A)[%]	14.5	7.1	6.4	6.0	7.3	4.3	7.8	7.5	7.8	6.7

✓ 九州電力については川内原発原子力発電所1号機に加え、営業運転開始済みの2号機(89万kW) を供給力に計上した評価結果を引用

▶ 今回検証した電力需給見通し(厳寒 H1) 算定値

	北海道エリア	東北エリア	東京エリア	中部エリア	北陸エリア	関西エリア	中国エリア	四国エリア	九州エリア	9エリア計
最大需要電力 (A)[万kW] 送電端	532	1,403	5,251	2,356	501	2,616	1,063	491	1,515	15,728
供給力 (B)[万kW] 送電端	612	1,531	5,564	2,523	541	2,734	1,158	532	1,638	16,832
予備力 (C)=(B)-(A)[万kW]	80	128	313	167	40	118	95	41	123	1,104
予備率 (C)/(A)[%]	15.0	9.1	6.0	7.1	8.0	4.5	8.9	8.4	8.1	7.0

【表 4. 電力需給検証小委員会の結果との比較(2月)】

本報告書では、電力需給検証小委員会報告書の検証結果を、参考として併記する。

▶ 経済産業省「電力需給検証小委員会報告書」より引用※12 (厳寒 H1)

	北海道電力	東北電力	東京電力	中部電力	北陸電力	関西電力	中国電力	四国電力	九州電力	9社計
最大需要電力 (A)[万kW] 発電端	543	1,408	4,840	2,356	529	2,496	1,067	497	1,515	15,251
供給力 (B)[万kW] 発電端	619	1,493	5,160	2,499	557	2,579	1,170	528	1,648	16,254
予備力 (C)=(B)-(A)[万kW]	76	85	320	143	28	83	103	31	133	1,003
予備率 (C)/(A)[%]	14.0	6.1	6.6	6.1	5.3	3.3	9.6	6.2	8.8	6.6

✓ 九州電力については川内原発原子力発電所 1 号機に加え、営業運転開始済みの 2 号機 (89 万 kW) を供給力に計上した評価結果を引用

▶ 今回検証した電力需給見通し(厳寒 H1) 算定値

	北海道エリア	東北エリア	東京エリア	中部エリア	北陸エリア	関西エリア	中国エリア	四国エリア	九州エリア	9ェリア計
最大需要電力 (A)[万kW] 送電端	532	1,391	5,251	2,356	501	2,615	1,063	491	1,511	15,711
供給力 (B)[万kW] 送電端	609	1,509	5,586	2,526	531	2,712	1,178	526	1,643	16,820
予備力 (C)=(B)-(A)[万kW]	77	118	335	170	30	97	115	35	132	1,109
予備率 (C)/(A)[%]	14.5	8.5	6.4	7.2	6.0	3.7	10.8	7.1	8.7	7.1

※12 出典:「電力需給検証小委員会報告書」(経済産業省)平成27年10月26日

 $http://WWW.meti.go.jp/committee/sougouenergy/kihonseisaku/denryoku_jukyu/report_005.html$

3. まとめ

当機関の平成27年度冬季の電力需給見通しを以下の通りまとめる。

平成 23 年度並^{※13}の厳寒時における需給状況を想定した結果、全てのエリアで電力需給検証小委員会が基準とする安定供給に最低限必要な予備率 3%以上を確保できる見通しである。(冬季12 月、1 月、2 月各月の予備率は沖縄を除く 9 エリア全体 7.0%以上、50Hz 地域 7.3%以上、60Hz 地域 6.8%以上)

また、各エリアの最大電源ユニットが脱落した場合でも、地域間連系線の空容量およびマージンを通じた他エリアからの電力融通を考慮すると、全てのエリアにおいて予備率3%以上を確保できる見通しである。

この上で当機関としては、大規模電源の脱落時や想定外の厳寒・荒天時には電力需給が悪化する可能性があることに留意し、需給状況の監視業務を引き続き徹底するとともに、需給状況が悪化しまたは悪化するおそれがある場合において、業務規程に基づく広域的な融通指示・要請等を通じ、電力の最大限効率的な需給調整に努める。

以上

※13 北海道エリアについては平成22年度並み、東北及び東京エリアは平成25年度並み。

▶ 別添資料

・「別表 5. 電力需給の見通し(参考値:平温 H3)」

【別表 5. エリア別の電力需給の見通し】(参考値:平温 H3)

▶ 平成 27 年 12 月

	北海道エリア	東北 エリア	東京 エリア	50Hz計	中部 エリア	北陸 エリア	関西 エリア	中国 エリア	四国 エリア	九州 エリア	60Hz計	9エリア計	沖縄 エリア	10エリア計
最大需要電力 (A)[万kW]	526	1,308	4,530	6,364	2,190	454	2,344	943	468	1,353	7,752	14,116	92	14,208
供給力 (B) [万kW]	621	1,458	5,574	7,653	2,439	524	2,731	1,094	513	1,547	8,848	16,501	147	16,648
予備力 (C)=(B)-(A) [万kW]	95	150	1,044	1,289	249	70	387	151	45	194	1,096	2,385	55	2,440
予備率 (C)/(A)[%]	18.0	11.5	23.0	20.3	11.4	15.4	16.5	16.0	9.6	14.3	14.1	16.9	59.8	17.2

▶ 平成 28 年 1 月

	北海道エリア	東北 エリア	東京 エリア	50Hz計	中部 エリア	北陸 エリア	関西エリア	中国 エリア	四国エリア	九州 エリア	60Hz計	9エリア計	沖縄 エリア	10エリア計
最大需要電力 (A)[万kW]	516	1,356	4,857	6,729	2,257	481	2,489	1,020	468	1,435	8,150	14,879	94	14,973
供給力 (B) [万kW]	612	1,518	5,554	7,684	2,509	535	2,827	1,159	532	1,623	9,185	16,869	149	17,018
予備力 (C)=(B)-(A) [万kW]	96	162	697	955	252	54	338	139	64	188	1,035	1,990	55	2,045
予備率 (C)/(A)[%]	18.7	11.9	14.4	14.2	11.2	11.2	13.6	13.6	13.7	13.1	12.7	13.4	58.5	13.7

▶ 平成 28 年 2 月

	北海道エリア	東北 エリア	東京 エリア	50Hz計	中部 エリア	北陸 エリア	関西 エリア	中国 エリア	四国 エリア	九州 エリア	60Hz計	9エリア計	沖縄 エリア	10エリア計
最大需要電力 (A)[万kW]	516	1,345	4,857	6,718	2,257	481	2,488	1,020	468	1,431	8,145	14,863	92	14,955
供給力 (B) [万kW]	609	1,497	5,576	7,682	2,511	525	2,815	1,177	526	1,627	9,181	16,863	141	17,004
予備力 (C)=(B)-(A) [万kW]	93	152	719	964	254	44	327	157	58	196	1,036	2,000	49	2,049
予備率 (C)/(A)[%]	18.1	11.3	14.8	14.4	11.3	9.1	13.1	15.4	12.4	13.7	12.7	13.5	53.3	13.7

電力広域的運営推進機関