別紙4

昨年度から運用容量算出方法を見直した事項と運用容量への影響

2024年3月1日 電力広域的運営推進機関

- 熱容量限度値の算出方法を見直したことで、**東北東京間連系線において、**冬季の制約である熱容量限度値が上がり、昨年度算出時に比べて、**冬季運用容量(東京向)が最大41万kW増加した。**
- なお、上記については、今年度の運用容量検討課題として2024年度以降の運用容量へ適用することで検討・整理を進めていたが、**需給ひつ迫へ備え当初の予定より前倒し2023年度の冬季(12~3月)から 運用容量に反映した。**

項目	対象となる連系線	見直し内容	運用容量への影響
【1】熱容量の適用期間細分化	• 東北東京間連系線	再エネ出力制御量の低減、 電力取引の活性化を図る。	・東北東京間連系線において、昨年度算出 時に比べて、冬季運用容量(東京向)が 最大41万kW増加

■ 2023年度の冬季運用容量を算出した結果、東北東京間連系線(東京向)の熱容量限度値が増加した。
たことにより、**15万kW~41万kW増加**した。

2023年度 東北東京間連系線(東京向)運用容量(変更前、変更後)

7

- 今冬の東北東京間連系線(東京向)の運用容量見直し結果は以下のとおり。
- 平日昼間帯において、運用容量が 15~41万kW の増加が見込まれる。

【変更前:2023年3月1日公表】 2023年度 運用容量(東京向)

【万kW】

連系線名称	断面		12月	1月	2月	3月
東北東京間連系線	平日	昼間	540(1)	575(1)	580(1)	520(1)
		夜間	530(1)	525(1)	530(1)	500(1)
	休日	昼間	540(1)	575(1)	580(1)	520(1)
		夜間	530(1)	525(1)	530(1)	500(1)

【東北東京間連系線熱容量見直しを反映】(変更後:赤字)

2023年度 運用容量(東京向)

【万kW】

連系線名称	断面		12月	1月	2月	3月
東北東京間連系線	平日	昼間	555(1) [+15]	606(2) [+31]	621(②) 【+41】	555(1) [+35]
		夜間	535(①) 【+5】	535(1) [+10]	535(1) (+5)	526(2) (+26)
	休日	昼間	555(①) 【+15】	606(2) [+31]	621(2) (+41)	555(1) [+35]
		夜間	535(①) 【+5】	535(1) [+10]	535(1) [+5]	526(2) (+26)

^()内の数字は、運用容量決定要因(①熱容量、②同期安定性、③電圧安定性、④周波数維持)を示す。

rganization for Cross-regional Coordination of Transmission Operators, JAPAN

[※] 至近の電源作業停止を考慮し算出

検討結果 6

■ 2021年度下期から2022年度にかけて現地,洞道内温度を測定し,基底温度の見直しを行った。その結果,基底温度を35℃とし,ケーブル許容容量を見直した。 (236万kW⇒289万kW)

■ ケーブル区間の熱容量の見直しに伴い、熱容量制約はケーブル区間の熱容量(289万kW)から架空送電線熱容量(259万kW)が熱容量制約値となる。

14-7-64	見直	iし前	見直し後	
連系線	熱容量(ケーブル)	適用期間	熱容量(架空線)	適用期間
東北東京間連系線	236万kW (2,616A/cct)	4~3月	259万kW (2,868A/cct)	4~3月

		容量	備 考
(P=√3*(275*		144万kW(1回線あたり) (P=√3*(275*10³)*3,204*0.95)	CAZV 1,600mm ² ×2導体×2回線 3,204A(2導体分) ケーブル
		129万kW(1回線あたり) (P=√3*(275*10³) *2,868*0.95)	ACSR 610mm ² ×2導体×2回線 2,868A(2導体分) 連続過負荷容量 送電線
	直列機器	180万kW(1回線あたり) (P=√3*(275*10³) *4,000*0.95)	断路器•遮断器:4,000A

出所: 2023年度 第3回運用容量検討会 資料1-1

