実需給断面における連系線マージンの値及び確保理由について

2018年3月1日

空白

1. 実需給断面におけるマージンの確保理由

連系線	方向	マージンの値	マージンを確保する理由
北海道本州間 連系設備 東北東京間 連系線	北海道⇒ 東北	120~508MW	北海道本州間連系設備が緊急停止した場合に北海道エリアの周波数上昇を一定値以内に抑制するため。具体的には、北海道本州間連系設備の運用容量から、当該連系設備が緊急停止した場合に北海道エリアの周波数の上昇が一定値以内となる最大の潮流の値を差し引いた値とする。〈C1〉但し、東京エリアが需給ひっ迫した場合において北海道エリアから供給が期待できる値(※1)の方が大きい場合は、その値とする。〈A1〉また、上記に加え、※4を加える。〈BO〉
	東北⇒ 北海道	450~548MW	北海道エリアの電源のうち、出力が最大である単一の電源の最大出力が故障等により失われた場合にも、北海道エリアの周波数低下を一定値以内に抑制するため。〈B1〉但し、北海道本州間連系設備の運用容量から、当該連系設備が緊急停止した場合に北海道エリアの周波数低下が一定値以内となる潮流の値を差し引いた値の方が大きい場合は、その値とする。〈C1〉また、上記に加え、※4を加える。〈BO〉
	東北⇒ 東京	① 0~808MW ② 330~808MW	※1の値に※4を加えた値(①)とする。〈A1、BO〉 但し、台風や暴風雪等の予見可能なリスクが高まった場合は、電力系統を安定に維持するため、東京エリア内で想定する送電線の故障により複数の電源が脱落した場合に東北エリアから東京エリアに流れる最大の潮流の値と※1の値のうち大きい値に※4を加えた値(②)とする。〈C2、BO〉
	東京⇒ 東北	0~412MW	※1〈A1〉また、上記に加え、※4を加える。〈BO〉
東京中部間連系設備	東京⇒ 中部	600~760MW	60Hz系統内で送電線の故障により複数の電源が脱落した場合又は最大電源が脱落した場合に、60Hz系統の周波数低下を抑制するため。但し、東京中部間連系設備を介して東北・東京エリアから電力を受給しても、東北・東京エリアの周波数偏差と60Hz系統の周波数偏差が逆転しない値とする。〈B2〉但し、※1の値の方が大きい場合は、その値とする。〈A1〉
	中部⇒ 東京		50Hz系統内で送電線の故障により複数の電源が脱落した場合、又は最大電源が脱落した場合に、東北・東京エリアの周波数低下を抑制するため。但し、東京中部間連系設備を介して60Hz系統から電力を受給しても、60Hz系統の周波数偏差と東北・東京エリアの周波数偏差が逆転しない値とする。〈B1〉但し、※1の値の方が大きい場合は、その値とする。〈A1〉

оссто

Organization for Cross-regional Coordination of Transmission Operators, JAPAN

連系線	方向	マージンの値	マージンを確保する理由
中部北陸間	北陸⇒中部	なし	なし
連系線	中部⇒北陸	0~700MW	%1、%2〈A1〉
北陸関西間	関西⇒北陸	O' - 1 OOIVIVV	~ 1
連系線	北陸⇒関西	0~70MW	%1、%3〈A1〉
中部関西間	中部⇒関西	0~360MW	%1、%3〈A1〉
連系線	関西⇒中部	0~370MW	%1 〈A1〉
関西中国間	関西⇒中国	0~320MW	%1 〈A1〉
連系線	中国⇒関西	0~350MW	%1、%3〈A1〉
関西四国間	関西⇒四国	なし	なし
連系設備	四国⇒関西	なし	なし
中国四国間	中国⇒四国	0~700MW	%1 〈A1〉
連系線	四国⇒中国	なし	なし
中国九州間	中国⇒九州	なし	なし
連系線	九州⇒中国	なし	なし

- ※1 原則ゼロとする。但し、電気の供給先となる供給区域に必要な運転予備力 又は 供給区域に電気を供給予定の供給区域の電源のうち出力が最大である単一の電源の最大出力(但し、当該電源が発電する電気を継続的に供給区域外へ供給している場合は当該供給量を控除した値とする)に対して予備力が不足する場合は、不足する電力の値をマージンとして設定
- ※2 中部北陸間連系設備及び北陸関西間連系線と合わせて確保する
- ※3 北陸関西間連系線、中部関西間連系線及び関西中国間連系線と合わせて確保する
- ※4 北海道風力実証試験にかかるマージンとして、調整力のエリア外調達のため。具体的には、北海道風力実証試験のために連系する風力発電の予測誤差に対応できる値
- (注)・マージンの値は2018年度における値
 - ・ 想定需要の見直し等や北海道風力実証試験発電機の運開月・連系量の変更等により、マージンの値は今後変更となる可能性あり
 - 〈 〉はマージンの区分を示す。シート5,6参照

連系線マージンのあり方を検討中の調整力及び需給バランス評価等に関する委員会での整理事項は、都度反映していく予定

【予備力・調整力に関連したマージン】

内は当該区分に該当する現状のマージン

マージンの目的	通常考慮すべきリスクへの対応			稀頻度リスクへの対応
マージンの分類	(参考) エリアが確保す る調整力分 ^{※1}	左記のうち、 エリア外調達分	エリア外期待分	エリア外期待分
「需給バランスに対応したマージン」 需給バランスの確保を目的として、連系線を 介して他エリアから電気を受給するために設	電源I	AO	A1 H2	A2 H5
定するマージン		(該当なし)	・最大電源ユニット相当 ・系統容量3%相当※2	•系統容量3%相当※3
「周波数制御に対応したマージン」 電力系統の異常時に電力系統の周波数を安 定に保つために設定するマージン	電源 I 一a	В0	B1 🖽	B2 🖽
※周波数制御(電源脱落対応を除く)のために マージンを設定する場合は、「異常時」の表 現の見直しが必要。		・北海道風力実証試験	·東京中部間連系設備 (EPPS:逆方向) ·北海道本州間連系設備 (緊急時AFC:逆方向)	·東京中部間連系設備 (EPPS:順方向) ·北海道本州間連系設備 (緊急時AFC:順方向)

※1: 表中には記載を省略しているが、電源Ⅱの余力も含む。

※2: 従来区分①の系統容量3%相当マージンについては、長期計画断面では区分Dのマージンのほうが大きいため必要性を検討する必要性が無くなっている。 一方、現在、前々日時点でエリア予備力不足時にはマージンを確保していることから、ここに記載している。

※3: ESCJの整理において、系統容量3%相当マージンに従来区分⑤(稀頻度リスク対応)に該当する観点が含まれることから記載

【出典】第11回調整カ及び需給バランス評価等に関する委員会 資料2に「北海道風力実証試験」を追記

http://www.occto.or.jp/iinkai/chouseiryoku/2016/chousei_jukyu_11_haifu.html

出典:第24回調整力及び需給バランス評価等に関する委員会 資料1-2

【連系線潮流抑制による安定維持のためのマージン】

マージンの目的マージンの分類	通常考慮すべき リスクへの対応	稀頻度 リスクへの対応
「連系線潮流抑制のためのマージン」 電力系統の異常時に電力系統を安定に保つ ことを目的として、当該連系線の潮流を予め抑	C1 _{II4}	C2 _{II4}
制するために設定するマージン	·北海道本州間連系設備 (潮流抑制)	·東北東京間連系線 (潮流抑制)

【電力市場取引環境整備のマージン】

マージンの目的マージンの分類	電力市場取引 環境整備
「電力市場取引環境整備のマージン」 先着優先による連系線利用の登録によって競 争上の不公平性が発生することを防止するた	D
めに設定するマージン	(該当なし)

【出典】第11回調整力及び需給バランス評価等に関する委員会 資料2

http://www.occto.or.jp/iinkai/chouseiryoku/2016/chousei_jukyu_11_haifu.html

出典:第24回調整力及び需給バランス評価等に関する委員会 資料1-2