九州離島における再生可能エネルギー発電設備の 出力抑制の検証結果

~2018年11月 九州電力~

2018年12月13日 電力広域的運営推進機関

目次

- 1. はじめに
- 2. 検証内容
- 3. 抑制実績
- 4. 想定
 - (1)需要想定
 - (2)太陽光の最大出力想定
 - (3)風力の最大出力想定
 - (4)太陽光、風力の出力低下想定
- 5. 下げ調整カ不足時の対応順序
- 6. 種子島および壱岐の発電設備
- 7. 日別の状況
- 8. 検証結果
- (参考)当日の需給実績

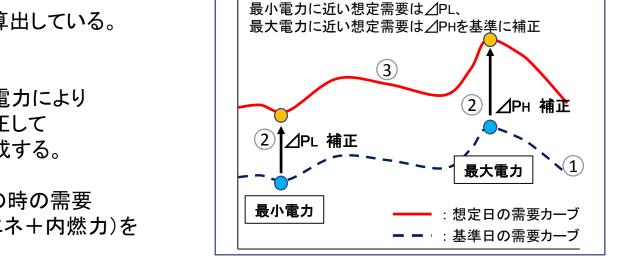
九州電力は、2018年11月に、種子島および壱岐において再生可能エネルギー発電設備(以下、「再エネ」という。)の出力抑制を実施した。

本機関は、業務規程第180条に基づき、九州電力から送配電等業務指針(以下、「業務指針」という。)第183条に定める事項の説明を受け、これを裏付ける資料を受領したうえで、九州電力の出力抑制が法令および指針に照らして適切であったか否かを確認および検証したので、その結果を公表する。

本機関は、法令および指針から、以下の項目について確認し、九州電力の抑制指令が適切であったかの検証を行った。

- ① 抑制指令を行った時点で想定した需給状況
- ② 下げ調整力(※)確保(発電機の出力抑制、揚水発電機の揚水運転)の 具体的内容
- ③ 再エネの出力抑制を行う必要性
 - (※)下げ調整力とは、火力電源などにおいて、出力を下げることができる余地をいう。 再エネは、短時間に出力が上下するため、対応して火力電源の出力調整を行う ことが必要となる。このような調整のうち、電源の出力を下げる調整を行うことの できる範囲を、一般的に「下げ調整力」という。
 - 検証の対象は、業務指針第183条第1号より、「再エネ発電設備の出力抑制の指令を 行った時点」。
 - ・ 出力抑制は再工ネ特別措置法施行規則第14条第1項第8号イより、原則として、抑制 を行う前日までに指示を行うこととなっている。

九州電力は、11月の以下の日について、下げ調整力不足が発生することを想定したため、再工ネ事業者に対し、出力抑制を指令した。


場所		壱岐			
指令日時	11月19日(月) 16時	11月3日(土) 16時			
抑制実施日	11月20日(火)	11月23日(金)	11月25日(日)	11月4日(日)	
抑制事業者数	2	3	2	1	
抑制必要量	700kW	400kW	410kW	680kW	
抑制時間	9~16時	9~16時	9~16時	9~16時	
備考	別紙				

九州電力は、以下の方法で当日の下げ調整力が最小になる時刻と、その時の需要を想定した。

〇<u>需要想定</u>

- ①基準日の選定
 - ・至近の実績(※)から想定日の気象条件に類似する日を、曜日や休日等を考慮して選定する。(※)想定日前2~3週間程度で、類似するものがない場合は前年同時期
- ②最大電力、最小電力の気温補正
 - ・過去の気温(気象庁データ)と需要実績から、気温帯ごとに需要の増減度合を示す
 - 「気温感応度」を予め求めておき、 気温予報(気象庁データ)に応じて最大電力、 最小電力を補正する。
 - 気温感応度は離島ごとに算出している。
- ③需要カーブの作成
 - ・補正後の最大電力、最小電力により 基準日の需要カーブを補正して 想定日の需要カーブを作成する。
- ④下げ調整力最小時刻とその時の需要
 - ・需要想定後に供給力(再エネ+内燃力)を 策定して算出する。

需要カーブ作成のイメージ図

4. 想定(2)太陽光の最大出力想定

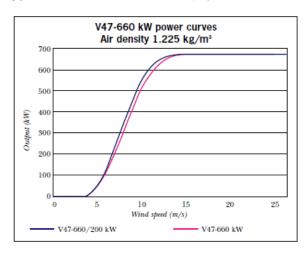
九州電力は、太陽光発電の最大出力を、最新の日射量予測値から想定した。

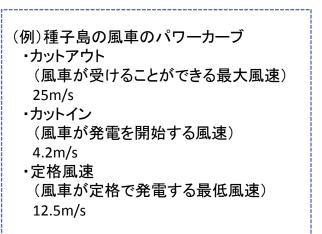
〇<u>太陽光最大出力</u>

= 日射量予測値(※1)×出力換算係数(※2)×発電設備容量(※3)

- (※1) 気象会社から前日(もしくは抑制当日)に提供された、抑制当日の該当エリアの 日射量予測値(1時間値)。
- (※2) 該当エリアもしくは九州本土の太陽光発電設備の発電出力と日射量との関係 から算定。電圧、契約別の4区分に細分化した月別の出力換算係数を使用。
- (※3) 該当エリアにおける抑制当日の太陽光発電設備容量。

九州電力は、風力発電の最大出力を、最新の風速予測値から想定した。


○高圧風力出力(1基あたり)


 $= Ax^3 + Bx^2 + Cx + D$

x : 風速予測値(m/s)(※4)

A、B、C、D : 出力換算係数(※5)

- (※4) 気象会社から前日(もしくは抑制当日)に提供された、抑制当日の該当エリアの 風速予測値(1時間値)。
- (※5) 風車固有のパワーカーブより、風速と出力の関係を示す計算式を導いて算定。

〇小型の低圧風力出力は、高圧の想定出力合計を設備量比率で按分して算定。

4. 想定(4)太陽光、風力の出力低下想定

九州電力は、天候急変時等の出力低下を過去の実績から想定した。

○天気急変時の出力低下

過去の実績より、天気急変時には、それまでの出力が以下の割合にまで低下する可能性があると想定している。

(※6) 再工ネ発電設備量の増加(面的な広がり)が反映された過去2ヵ年の実績 データを基に、発電出力の平滑化効果を考慮した合理的な最小値を採用。 なお、データの蓄積は継続しており、設備増設等による平滑化効果を適切に 反映するため、必要に応じて見直していく。 九州電力は、業務指針に則って出力抑制を実施した。

○下げ調整力不足時の対応順序

業務指針174条による下げ調整力不足時の対応順序は以下の通りだが、 当該地域にオンラインで調整できない火力電源等がないこと、他の地域 と連系されていないことおよび、バイオマス関連発電設備がないことから、 ⑤自然変動電源の出力抑制を実施した。

- ① 一般送配電事業者からオンラインで調整できない火力電源等の 出力抑制および揚水式発電機の揚水運転
- ② 長周期広域周波数調整
- ③ バイオマス専焼電源の出力抑制
- ④ バイオマス電源(廃棄物等の未利用資源有効活用型)の出力抑制
- ⑤ 自然変動電源の出力抑制
- 6、7 略

6. 種子島および壱岐の発電設備

種子島および壱岐の発電設備は以下の通り。

発電設備	種別	種子島	壱岐	
光电改加	作里 クリ 	2018年11月20日~25日	2018年11月4日	
	太陽光(高圧)	8,230kW	4,690kW	
 再生可能エネルギー	太陽光(低圧)	5,400kW	4,091kW	
発電設備	風力	700kW	1,500kW	
	合計	14,330kW	10,281kW	
	6,000kW機	4台	4台	
	4,500kW機	2台	2台	
内燃力発電設備	3,000kW機	2台	2台	
	1,500kW機	1台		
	合計	40,500kW	39,000kW	

抑制日別の状況は別紙に記載の通り。

別紙:種子島/壱岐 検証日						
種子島			壱岐			
11月20日(火)	11月23日(金)	11月25日(日)	11月4日(日)			

本機関が検証した結果、下げ調整力不足が見込まれたために行われた今回の出力抑制の指令は、適切であると判断する。

〇検証を行った3項目

- ① 抑制指令を行った時点で想定した離島の需給状況
 - ・需要、再エネの最大出力および出力低下について、現状まで蓄積した データを可能な限り活用して想定していた。
- ② 下げ調整力確保の具体的内容
 - ・内燃力機を定格出力の50%まで出力抑制し、下げ調整力を最大限確保する計画としていた。
- ③ 再エネの出力抑制を行う必要性があったか
 - ・再エネの出力変動に対しても必要な供給力を確保し、かつ内燃力機の 定格出力の50%を確保するため、出力抑制を行う必要性があった。

九州電力から報告を受けた当日の需給実績を、参考として公表する。

		11月20日(火)種子島	11月23日(金)種子島 11月25		11月25日(日(日)種子島	
		前日計画 [出力抑制後]	実績	前日計画 [出力抑制後]	実績	前日計画 [出力抑制後]	実績	
気象	天候	晴	晴	晴	晴のち曇	晴	晴	
予報	最高気温	19.0°C	18.1°C	17.0°C	15.4°C	20.9°C	21.4°C	
	下げ調整力最小時刻	13時	13時	11時	11時	13時	12時	
需給	需要 (前日計画との差 ^(※))	16,600kW	15,800kW (-800kW)	16,000kW	16,380kW (380kW)	15,900kW	15,760kW (-140kW)	
バー	発電出力合計	16,600kW	15,800kW	16,000kW	16,380kW	15,900kW	15,760kW	
ランコ	火力 内(最大出力に対する割合)	8,839kW (54%)	7,550kW (46%)	8,647kW (52%)	10,390kW (63%)	8,912kW (54%)	7,730kW (47%)	
ス	訳 再エネ(太陽光・風力) (前日計画との差 ^(※))	7,761kW	8,250kW (489kW)	7,353kW	5,990kW (-1,363kW)	6,988kW	8,030kW (1,042kW)	
火力の最大出力		16,500kW	16,500kW	16,500kW	16,500kW	16,500kW	16,500kW	
火力の最小出力		8,250kW	8,250kW	8,250kW	8,250kW	8,250kW	8,250kW	

(※) 需要と再エネ出力は当日の天候等の影響を受けるため、計画と実績に差異が生じる。

			11月4日(日)壱岐		
			前日計画 [出力抑制後]	実績	
気象	天	候	晴	晴時々曇	
予報	最	高気温	19.1°C 18.3°C		
	下	げ調整力最小時刻	13時	14時	
需給		要 日計画との差 ^(※))	12,800kW	12,780kW (-20kW)	
バー	発	電出力合計	12,800kW	12,780kW	
バランス	内訳	火力 (最大出力に対する割合)	7,575kW (51%)	9,170kW (61%)	
Z		再エネ(太陽光・風力) (前日計画との差 ^(※))	5,225kW	3,610kW (-1,615kW)	
火力の最大出力		15,000kW	15,000kW		
火力の最小出力			7,500kW	7,500kW	

(※) 需要と再エネ出力は当日の天候等の影響を受けるため、計画と実績に差異が生じる。

