Outlook of Electricity Supply–Demand and Cross-regional Interconnection Lines:

Actual Data for Fiscal Year 2017

December 2018

FOREWORD

The Organization for Cross-regional Coordination of Transmission Operators, JAPAN (hereinafter, the Organization), prepares and publishes its Annual Report according to Article 181 of the Operational Rules regarding the matters specified below.

- i. Actual electric supply and demand (including evaluation and analysis of quality of electricity in light of frequency, voltage, and blackouts of each regional service area)
- ii. State of electric network
- iii. Actual Network Access Business until the previous year.
- iv. Forecast on electric demand and electric network (including forecast of improvement of restriction on network interconnection of generation facilities) for the next fiscal year and a mid- and long-term period based on a result of compiling of electricity supply plans and their issues.
- v. Evaluation and verification of proper standards of reserve margin and balancing capacities of each regional service area based on the next article, as well as contents of review as needed

The Organization published the actual data for electricity supply-demand and network system utilization ahead of the Annual Report because of the completion of actual data collection up to FY 2017.

SUMMARY

This report is presented to review the outlook of electricity supply-demand and crossregional interconnection lines in fiscal year 2017 (FY 2017), based on the Article 181 of the Operational Rules of the Organization.

The report consists of two parts: one is the situation of electricity supply and demand, and the other is interconnection lines.

Regarding supply and demand, the peak demand, 155,770 MW, and the monthly electric energy requirement, 87,438 GWh, nationwide, were recorded in January due to severe winter weather conditions across all of Japan.

The reserve margin against summer and winter peak demand was 13.9% and 8.6%, respectively.

Power exchange instructions by the Organization reached 10 times, and all instructions were dispatched either in January or February.

The number of the requests to shed power generation by renewables was 78 in FY 2017, and they happened in isolated islands of the Kyusyu area.

The total volume of the utilization of interconnection lines was 132,395 GWh, and +29,345 GWh over FY 2016.

The total number of congestion management hour was 45,358 h, and + 40,190 h over FY 2016.

The numbers and days of the maintenance of interconnection lines were 267 times and 432 days in total over FY 2017.

We hope the report helps you.

CONTENTS

CHAPTER I: ACTUAL ELECTRICITY SUPPLY AND DEMAND1
1. Regional Service Areas for 10 General Transmission and Distribution Companies, and the
Definition of a Season 1
2. Outlook of Actual Weather Nationwide 2
3. Actual Nationwide Peak Demand 4
4. Actual Nationwide Electric Energy Requirements 6
5. Nationwide Load Factor8
6. Nationwide Supply–Demand Status during Peak Demand10
7. Nationwide Bottom Demand Period12
8. Nationwide Peak Daily Energy Supply13
9. Actual Power Exchange Instructed by the Organization14
10. Output Shedding of Renewable Energy-generating Facilities Operated by the Electric
Power Companies other than GT&D Companies17

CHAPTER II: ADTUAL UTILIZATION OF CROSS-REGIONAL INTERCONNECTION
LINES20
1. Cross-regional Interconnection Lines and their Management20
2. Actual Utilization of Cross-regional Interconnection Lines
3. Congestion Management and Constraints of Cross-regional Interconnection Lines27
4. Status of Maintenance Work of Cross-regional Interconnection Lines
5. Unplanned Outage of Cross-regional Interconnection Lines
6. Actual Utilization of Transmission Margin
7. Actual Employment of Transmission Margin35
8. Actual Available Transfer Capabilities of each Cross-regional Interconnection Line36
9. Actual Constraints on Cross-regional Interconnection Lines Nationwide42

CONCLUSION 44

Note:

The text of the Operational Rules was obtained from the amended version of April 1, 2018. Data for Chapter I include figures at the sending end, i.e., the electricity supplied to the public network system from power plants with energy deducted for station services.

CHAPTER I: ACTUAL ELECTRICITY SUPPLY AND DEMAND

1. Regional Service Areas for 10 General Transmission and Distribution Companies, and the Definition of a Season

(1) Regional Service Areas for 10 General Transmission and Distribution Companies

A regional service area describes the specific area to which a general transmission and distribution (GT&D) company transmits its electricity through cross-regional interconnection lines. Japan is divided into 10 regional service areas as shown in Figure 1-1. Regional service areas served by GT&D companies other than the Okinawa Electric Power Company (EPCO) are connected by the cross-regional interconnection lines.

Figure 1-1: The 10 Regional Service Areas in Japan and their Prefectural Distribution

(2) The Definition of Seasons

The report divides the seasons into summer and winter periods. The summer period is defined as July, August, and September. The winter period is defined as December, the following January, and February.

2. Outlook of Actual Weather Nationwide

(1) Weather during the Summer Period (June to August)

Table 1-1 shows anomalies in the temperature and precipitation ratios from June to August in FY 2017.
(a) Seasonal mean temperature was + 0.6 °C in the eastern region and + 0.7 °C in the western region over climatological normal due to more frequent flows of warm air from the west because of greater expansion of Pacific high-pressure system to the west. In the Okinawa/Amami region, the summer mean temperature was + 0.7 °C above climatological normal due to more sunshine days attributable to Pacific high-pressure system.

(b) Rainfall during the period was significant in Japan Sea's coast along the eastern region, and plenty in Japan Sea's coast along the northern region due to larger influence of low-pressure systems and stationary front. However, across the Pacific Sea's coast along the eastern region and Japan Sea's coast along the western region were insignificant amounts of rainfall due to less influence from seasonal rains.

Weather Region	Mean Temperature Anomaly[°C]	Precipitation Ratio[%]		
Northern	+0.3	+13		
Eastern	+0.6	-7		
Western	+0.7	-16		
Okinawa/Amami	+0.7	-26		

Table 1-1: Anomalies in Temperature and Rainfall by Weather Region from June to August (FY 2017)

Source: Japan Meteorological Agency, Tokyo Climate Center. Seasonal Climate Report over Japan for Summer (FY 2017). <u>http://ds.data.jma.go.jp/tcc/tcc/products/japan/climate/index.php?kikan=3mon&month=8&year=2017</u> <u>http://www.data.jma.go.jp/gmd/cpd/cgi-bin/view/kikohyo/en.php?kikan=3mon&month=8&year=2017</u>

(2) Weather during the Winter Period (December to the following February)

Table 1-2 shows the anomalies in temperature and the ratios of rainfall and snowfall from December to the following February in FY 2017.

(a) Seasonal mean temperatures were below climatological normal throughout the nation due to frequent flows of intensive cold air around Japan. In particular, the western region had an extremely cold winter after an interval of 32 years.

(b) Snowfall during the period was significant in Japan Sea's coast along the western region, and plenty in Japan Sea's coast along the eastern region due to frequent strong winter pressure patterns. In addition, some parts of Japan Sea's coast along the northern and western regions have record breaking snowfalls due to active flows of developed snow clouds from the Japan Sea. Also, the Pacific Sea coast of the northern and eastern region had days of much snow due to low pressure patterns.

(c) Sunshine durations during the period were significantly above normal on the Pacific Sea's coast along the eastern region and well above normal on the Pacific Sea's coast along the western region due to dominant winter pressure patterns.

Weather Region	Mean Temperature Anomaly[°C]	Precipitation Ratio[%]	Snowfall Ratio[%]
Northern	-0.4	+5	-7
Eastern	-0.7	-27	+5
Western	-1.2	-17	+21
Okinawa/Amami	-0.3	-18	-

Table 1-2: Anomalies in Temperature, Rainfall, and Snowfall by Weather Region from December to February (FY 2017)

Source:Japan Meteorological Agency, Tokyo Climate Center. Seasonal Climate Report over Japan for Winter (FY 2017). <u>http://ds.data.jma.go.jp/tcc/tcc/products/japan/climate/index.php?kikan=3mon&month=2&year=2018</u> <u>http://www.data.jma.go.jp/gmd/cpd/cgi-bin/view/kikohyo/en.php?kikan=3mon&month=2&year=2018</u>

3. Actual Nationwide Peak Demand

Peak demand describes the highest consumption of electricity during a given period, such as day, month, or year. Table 1-3 shows the monthly peak demand for regional service areas in FY 2017. Figures 1-2 and 1-3 show the nationwide monthly peak demand*, and the annual peak demand by regional service areas, respectively. In this report, "peak demand" refers to the maximum hourly value of electric energy requirement.

							,					
	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
Hokkaido	406	358	354	433	401	388	423	467	512	525	498	503
Tohoku	1,056	1,011	1,059	1,302	1,284	1,068	1,069	1,231	1,373	1,461	1,380	1,278
Tokyo	4,090	3,883	4,102	5,047	5,383	4,385	4,058	4,263	4,566	5,124	5,266	4,521
Chubu	1,882	1,899	1,966	2,343	2,473	2,086	1,973	2,001	2,216	2,378	2,339	2,034
Hokuriku	386	392	409	502	497	421	396	442	499	541	517	452
Kansai	1,867	1,948	2,042	2,619	2,638	2,204	2,040	2,114	2,360	2,560	2,517	2,133
Chugoku	771	784	819	1,034	1,072	866	811	892	1,025	1,096	1,076	888
Shikoku	359	362	387	520	520	416	393	407	468	508	506	406
Kyushu	1,042	1,072	1,279	1,562	1,585	1,288	1,192	1,203	1,428	1,540	1,575	1,228
Okinawa	101	120	139	151	152	154	140	113	95	107	114	96
Nationwide	11,708	11,744	12,322	15,160	15,550	12,922	12,096	13,005	14,187	15,577	15 <i>,</i> 055	13,118

Table 1-3: Monthly Peak Demand for Regional Service Areas (FY 2017)

r10⁴1-337

* "Nationwide Peak Demand" means the maximum of the aggregated demand in a given period for regional service areas of 10 GT&D companies, not the addition of each regional peak demand.

* The value in red is the maximum monthly peak demand (i.e., the annual peak demand) and the value in blue is the lowest monthly peak demand for each regional service area, respectively.

Figure 1-2: Nationwide Monthly Peak Demand (FY 2017)

Figure 1-3: Annual Peak Demand for Regional Service Areas (FY 2017)

4. Actual Nationwide Electric Energy Requirements

Table 1-4 shows the monthly electric energy requirements for regional service areas in FY 2017. Figures 1-4 and 1-5 show the nationwide monthly electric energy requirements, and annual electric energy requirements for regional service areas, respectively.

													[GWh]
	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Annual
Hokkaido	2,380	2,220	2,147	2,433	2,345	2,227	2,408	2,660	3,246	3,226	2,982	2,879	31,153
Tohoku	6,231	6,018	5,964	6,918	6,646	6,076	6,386	6,889	8,146	8,466	7,776	7,360	82,878
Tokyo	21,207	20,999	21,733	26,843	25,731	22,328	22,158	22,766	26,578	27,809	25,535	23,806	287,494
Chubu	10,066	9,824	10,395	12,378	12,150	10,737	10,532	10,862	12,471	12,766	11,961	11,399	135,543
Hokuriku	2,289	2,171	2,213	2,616	2,570	2,276	2,304	2,503	2,949	3,113	2,864	2,668	30,536
Kansai	10,783	10,762	11,009	13,819	13,839	11,386	11,187	11,545	13,514	14,095	13,043	12,184	147,166
Chugoku	4,487	4,408	4,502	5 <i>,</i> 568	5,575	4,675	4,670	4,979	5,949	6,092	5,613	5,239	61,757
Shikoku	2,088	2,041	2,107	2,636	2,676	2,150	2,169	2,250	2,640	2,756	2,533	2,353	28,399
Kyushu	6,294	6,246	6,563	8,460	8,514	6,818	6,643	6,738	8,200	8,527	7,710	7,082	97,795
Okinawa	565	642	731	886	927	820	750	590	577	589	541	566	8,182
Nationwide	66,389	65,332	67,365	82,556	80,972	69,495	69,207	71,783	84,271	87,438	80,560	75,536	900,902

Table 1-4: Monthly Electric Energy Requirements for Regional Service Areas (FY 2017)

* The value in red is the maximum monthly energy requirement and the value in blue is the lowest monthly energy requirement for each regional service area, respectively.

Figure 1-4: Nationwide Monthly Electric Energy Requirements (FY 2017)

Figure 1-5: Annual Electric Energy Requirements for Regional Service Areas (FY 2017)

5. Nationwide Load Factor

The load factor describes the ratio of average demand to peak demand in a given period. Table 1-5 shows the monthly load factor for regional service areas in FY 2017,and Figures 1-6 and 1-7 show the nationwide monthly load factor*, and the annual load factor for regional service areas, respectively.

													[%]
	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Annual
Hokkaido	81.4	83.4	84.3	75.5	78.6	79.8	76.5	79.0	85.3	82.6	89.2	77.0	67.8
Tohoku	81.9	80.0	78.2	71.4	69.6	79.0	80.3	77.8	79.8	77.9	83.8	77.4	64.8
Tokyo	72.0	72.7	73.6	71.5	64.3	70.7	73.4	74.2	78.2	72.9	72.2	70.8	61.0
Chubu	74.3	69.5	73.4	71.0	66.0	71.5	71.8	75.4	75.6	72.2	76.1	75.3	62.6
Hokuriku	82.2	74.4	75.2	70.1	69.5	75.1	78.2	78.6	79.4	77.3	82.4	79.3	64.4
Kansai	80.2	74.2	74.9	70.9	70.5	71.8	73.7	75.9	76.9	74.0	77.1	76.8	63.7
Chugoku	80.8	75.6	76.3	72.4	69.9	74.9	77.4	77.5	78.0	74.7	77.6	79.3	64.3
Shikoku	80.8	75.8	75.7	68.2	69.2	71.8	74.2	76.8	75.8	72.9	74.5	77.8	62.4
Kyushu	83.9	78.3	71.3	72.8	72.2	73.5	74.9	77.8	77.2	74.4	72.9	77.5	70.4
Okinawa	77.5	72.1	73.1	78.9	81.7	74.1	72.0	72.6	81.9	74.0	70.4	79.5	60.8
Nationwide	78.8	74.8	75.9	73.2	70.0	74.7	76.9	76.7	79.8	75.5	79.6	77.4	66.0

Table 1-5: Monthly Load Factor for Regional Service Areas (FY 2017)

* "Nationwide load factor" refers to the load factor calculated for Japan, and not the average of each regional load factor.

* The value in blue is the lowest monthly load factor for each regional service area.

* Monthly Load Factor $(0/)$ —	Monthly Energy Requirement				
Monthly Load Factor (%) –	Monthly Peak Demand × Calendar Hours (24H × Monthly Days)				
* Appual Load Factor $(\%) =$	Annual Energy Requirement				
Annual Load Factor (70) –	Annual Peak Demand & Calendar Hours (24H & Annual Dave)				

Annual Peak Demand × Calendar Hours (24H × Annual Days)

Figure 1-6: Nationwide Monthly Load Factor (FY 2017)

Figure 1-7: Annual Load Factor for Regional Service Areas (FY 2017)

6. Nationwide Supply–Demand Status during Peak Demand

(1) Nationwide Supply-Demand Status during the Summer Peak Demand Period (July to September)

Table 1-6 shows the supply-demand status during the summer peak demand period for regional service areas in FY 2017.

	Peak Demand [10 ⁴ kW]	Occurrence Date & Time		Daily Maximum Temperature [℃]	Supply Capacity [10 ⁴ kW]	Reserve Capacity [10 ⁴ kW]	Reserve Margin (%)	Daily Energy Supply [10 ⁴ kWh]	Daily Load Facter [%]	
Hokkaido	433	7/14	Fri.	17	34.9	520	87	20.0	8,735	84.0
Tohoku	1,302	7/21	Fri.	17	31.8	1,517	216	16.6	25,492	81.6
Tokyo	5,383	8/9	Wed.	14	37.1	6,316	934	17.4	100,300	77.6
Chubu	2,473	8/24	Thur.	15	35.5	2,740	267	10.7	46,744	78.8
Hokuriku	502	7/21	Fri.	15	37.2	584	83	16.5	9,826	81.6
Kansai	2,638	8/24	Thur.	17	35.0	2,866	228	8.7	51,092	80.7
Chugoku	1,072	8/24	Thur.	15	34.8	1,190	117	10.9	20,563	79.9
Shikoku	520	8/25	Fri.	17	35.8	577	57	11.0	9,820	78.7
Kyushu	1,585	8/1	Tue.	15	34.1	2,022	436	27.5	30,251	79.5
Okinawa	154	9/11	Mon.	14	33.7	202	48	31.4	3,042	82.5
Nationwide	15,550	8/24	Thur.	15	-	17,716	2,165	13.9	300,493	80.5

Table 1-6: Supply–Demand	l Status during the Summer	Peak Demand Period for Regional Service	Areas (FY 2017)
	8		

* The daily maximum temperatures are provided by the Japan Meteorological Agency based on the data for the cities where the headquarters of GT&D companies, except the Okinawa EPCO, are located. (For the regional service area of the Okinawa EPCO, the data from Naha, prefectural capital of Okinawa were used instead).

* Daily Load Factor (%) = Daily Energy Requirement Daily Peak Demand × 24H

* "Supply capacity" in the table above refers to the maximum power that can be generated during peak demand. This capacity is the addition of installed generating capacity including the deducted portion, such as generator suspension for maintenance work, derating with the decrease in river flow, and unplanned generator outages.

(2) Nationwide Supply-Demand Status during the Winter Peak Demand Period (December to February)

Table 1-7 shows the supply-demand status during the winter peak demand period for regional service areas in FY 2017.

	Peak Demand [10 ⁴ kW]	Occurrence Date & Time		Daily Maximum Temperature [℃]	Supply Capacity [10 ⁴ kW]	Reserve Capacity [10 ⁴ kW]	Reserve Margin (%)	Daily Energy Supply [10 ⁴ kWh]	Daily Load Facter [%]	
Hokkaido	525	1/25	Thur.	10	-7.1	599	74	14.1	11,776	93.5
Tohoku	1,461	1/24	Wed.	18	-2.7	1,545	84	5.7	31,708	90.4
Tokyo	5,266	2/2	Fri.	11	1.9	5,564	298	5.7	106,342	84.1
Chubu	2,378	1/25	Thur.	18	-1.1	2,563	185	7.8	49,810	87.3
Hokuriku	541	1/25	Thur.	10	-2.9	614	72	13.3	12,085	93.0
Kansai	2,560	1/24	Wed.	19	0.2	2,762	202	7.9	52,323	85.2
Chugoku	1,096	1/25	Thur.	10	0.2	1,256	159	14.5	22,993	87.4
Shikoku	508	1/24	Wed.	19	0.0	542	34	6.7	10,329	84.7
Kyushu	1,575	2/6	Tue.	19	0.5	1,771	197	12.5	33,130	87.7
Okinawa	114	2/5	Mon.	20	11.5	155	41	35.8	2,237	81.6
Nationwide	15,577	1/25	Thur.	19	-	16,915	1,339	8.6	330,605	88.4

Table 1-7: Supply–Demand Status during the Winter Peak Demand Period for Regional Service Areas (FY 2017)

* The daily maximum temperatures are provided by the Japan Meteorological Agency based on the data for the cities where the headquarters of GT&D companies, except the Okinawa EPCO, are located. (For the regional service area of the Okinawa EPCO, the data from Naha, prefectural capital of Okinawa were used instead).

* Daily Load Factor(%) = Daily Energy Requirement Daily Peak Demand × 24H

* "Supply capacity" in the table above refers to the maximum power that can be generated during peak demand. This capacity is the addition of installed generating capacity including the deducted portion, such as generator suspension for maintenance work, derating with the decrease in river flow, and unplanned generator outages.

7. Nationwide Bottom Demand Period

Table 1-8 shows the status of the bottom demand period for regional service areas (FY 2017).

	Bottom Demand [10 ⁴ kW]	Occu Date a	rrence & Time		Daily Mean Temperature [°C]	Daily Energy Supply [10 ⁴ kWh]
Hokkaido	232	5/7	Sun.	8	13.0	6,326
Tohoku	623	8/16	Wed.	2	20.6	18,518
Tokyo	1,977	5/5	Fri.	6	19.6	57,022
Chubu	875	5/4	Thur.	7	19.0	23,708
Hokuriku	204	5/5	Fri.	8	19.2	5,415
Kansai	1,051	5/7	Sun.	7	20.6	29,158
Chugoku	449	5/6	Sat.	24	21.2	11,994
Shikoku	195	5/7	Sun.	8	22.2	5,560
Kyushu	619	5/8	Mon.	1	21.1	19,659
Okinawa	59	4/23	Sun.	7	21.5	1,718
Nationwide	6,477	5/5	Fri.	2	-	176,874

Table 1-8: Bottom Demand Period for Regional Service Areas (FY 2017)

* The daily maximum temperatures are provided by the Japan Meteorological Agency based on the data for the cities where the headquarters of GT&D companies, except the Okinawa EPCO, are located. (For the regional service area of the Okinawa EPCO, the data for Naha, prefectural capital of Okinawa were used instead).

8. Nationwide Peak Daily Energy Supply

Tables 1-9 and 1-10 show the summer peak daily energy supply for regional service areas in FY 2017 (July to September) and the winter peak daily energy supply for regional service areas in FY 2017 (December to the following February), respectively.

	Peak Daily Energy Supply [10 ⁴ kWh]	Occurrence Da	Daily Mean Temperature [°C]	
Hokkaido	8,735	7/14	Fri.	27.7
Tohoku	25,492	7/21	Fri.	26.6
Tokyo	100,300	8/9	Wed.	30.0
Chubu	46,744	8/24	Thur.	30.8
Hokuriku	9,826	7/21	Fri.	30.5
Kansai	51,157	8/25	Fri.	31.2
Chugoku	20,563	8/24	Thur.	34.8
Shikoku	9,820	8/25	Fri.	31.7
Kyushu	30,881	8/4	Fri.	32.2
Okinawa	3,162	8/1	Tue.	31.1
Nationwide	301,094	8/25	Fri.	-

Table 1-9: Summer Peak Daily Energy Supply for Regional Service Areas (FY 2017)

Table 1-10: \	Winter Peak	Daily Energy	Supply for	Regional	Service Areas	(FY 2017)
---------------	-------------	--------------	------------	----------	---------------	-----------

	Peak Daily Energy Supply [10 ⁴ kWh]	Occurrence Da	Daily Mean Temperature [°C]	
Hokkaido	11,776	1/25	Thur.	-7.1
Tohoku	32,217	1/25	Thur.	-3.7
Tokyo	106,342	2/2	Fri.	1.9
Chubu	49,810	1/25	Thur.	-1.1
Hokuriku	12,085	1/25	Thur.	-2.9
Kansai	53,597	1/25	Thur.	0.8
Chugoku	23,133	1/24	Wed.	-0.8
Shikoku	10,579	2/6	Tue.	0.3
Kyushu	33,130	2/6	Tue.	0.5
Okinawa	2,237	2/5	Mon.	11.5
Nationwide	330,605	1/25	Thur.	-

* The daily maximum temperatures are provided by the Japan Meteorological Agency based on the data for the cities where the headquarters of GT&D companies, except the Okinawa EPCO, are located. (For the regional service area of the Okinawa EPCO, the data for Naha, prefectural capital of Okinawa were used instead).

9. Actual Power Exchange Instructed by the Organization

According to the provisions of paragraph 1 of Article 28-44 of the Electricity Business Act, the Organization may, when it finds it necessary to improve the electricity supply-demand status, require members such as electric power companies to undertake certain necessary actions, if the status of the electricity supply-demand from an electricity business conducted by a member has worsened or is likely to worsen.

During FY 2017, the Organization required the EPCOs to exchange power 10 times (Table 1-11) according to items 1 to 3, paragraph 1 of Article 111 of the Operational Rules.

In addition, according to items 4 and 5, paragraph 1 of Article 111, the Organization shall instruct the member to lend, deliver, borrow, or share electrical facilities to or from other members, and take the necessary steps to improve their supply-demand status, in addition to the directions; however, no actual instructions were provided.

		Table 1-11. Actual 1 ower Exchange instructions by the Organization (11 2017)
	Date	January 23, 2018 at 21:30
		 Tohoku EPCO shall supply 1,400 MW of electricity at most to TEPCO PG from 22:00 till 24:00 on January 23. Chubu EPCO shall supply 300 MW of electricity at most to TEPCO PG from 22:00 till 24:00 on
	Instruction	January 23.
i.		• TEPCO PG shall be supplied 1,700 MW of electricity at most by Tohoku, and Chubu EPCO from 22:00 till 24:00 on January 23.
	Background	The supply-demand status may degrade without power exchanges through cross-regional interconnection lines because of demand growth caused by the intensive cold air, and the possible decrease of energy output from pumped storage hydro power plants.
	Date	January 23, 2018 at 22:48
		• Tohoku EPCO shall supply 1,490 MW of electricity at most to TEPCO PG from 0:00 till 6:00 on January 24.
	Instruction	• Chubu EPCO shall supply 520 MW of electricity at most to TEPCO PG from 0:00 till 6:00 on January 24.
11.		• TEPCO PG shall be supplied 2,000 MW of electricity at most by Tohoku, and Chubu EPCO from 0:00 till 6:00 on January 24.
	Background	The supply-demand status may degrade without power exchanges through cross-regional
		interconnection lines because of demand growth caused by the intensive cold air, and the possible decrease of energy output from numbed storage hydro power plants
	Date	January 24, 2018 at 01:51
		• Hokkaido EPCO shall supply 100 MW of electricity at most to TEPCO PG from 6:00 till 24:00 on January 24.
		• Tohoku EPCO shall supply 1,300 MW of electricity at most to TEPCO PG from 6:00 till 24:00 on January 24.
	T	• The Kansai EPCO shall supply 600 MW of electricity at most to TEPCO PG from 7:30 till 22:30 on January 24.
iii.	Instruction	• The Chugoku EPCO shall supply 100 MW of electricity at most to TEPCO PG from 17:00 till 20:00
		 on January 24. Kyushu EPCO shall supply 200 MW of electricity at most to TEPCO PG from 17:00 till 19:00 on January 24
		• TEPCO PG shall be supplied 2,000 MW of electricity at most by Hokkaido, Tohoku, the Kansai, the Chugoku, and Kyushu EPCO from 6:00 till 24:00 on January 24.
		The supply-demand status may degrade without power exchanges through cross-regional
	Background	interconnection lines because of demand growth caused by the intensive cold air, and the possible decrease of energy output from pumped storage hydro power plants.

Table 1-11: Actual Power Exchange Instructions by the Organization (FY 2017)

	Dato	January 25 2018 at 16:30
	Date	Toboly FDCO aball supply 1 000 MW of electricity at most to TFDCO DC from 17:00 till 24:00 on
		Indicku Er CO shall supply 1,000 MW of electricity at most to TEr CO FG from 17.00 till 24.00 of
		January 25.
		• Chubu EPCO shall supply 400 MW of electricity at most to TEPCO PG from 17:00 till 23:00 on
	Instruction	January 25.
177		• The Kansai EPCO shall supply 280 MW of electricity at most to TEPCO PG from 17:00 till 18:00 on
1v.		January 25.
		• TEPCO PG shall be supplied 1,000 MW of electricity at most by Tohoku, Chubu, and the Kansai
		EPCO from 17:00 till 24:00 on January 25.
		The supply-demand status may degrade without power exchanges through cross-regional
	Background	interconnection lines because of demand growth caused by the intensive cold air, and the possible
		decrease of energy output from pumped storage hydro power plants.
	Date	January 25, 2018 at 21:04
	Dutt	Hakkaida EPCO shall supply 100 MW of alastriaity at most to TEPCO PC from 15:30 till 22:00 on
		Interview 26
		January 20.
		• Ionoku EPCO shall supply 1,000 MW of electricity at most to 1 EPCO PG from 0.00 till 24.00 on
		January 26.
v.		• Chubu EPCO shall supply 490 MW of electricity at most to TEPCO PG from 16.30 till 22.00 on
	Instruction	January 26.
		• Hokuriku EPCO shall supply 35 MW of electricity at most to TEPCO PG from 17-30 till 18-00 on
		January 26.
		• The Kansai EPCO shall supply 600 MW of electricity at most to TEPCO PG from 8.00 till 18.00 on
		January 26.
		• TEPCO PG shall be supplied 1,370 MW of electricity at most by Hokkaido, Tohoku, Chubu,
		Hokuriku, and the Kansai EPCO from 0:00 till 24:00 on January 26.
		The supply-demand status may degrade without power exchanges through cross-regional
	Background	interconnection lines because of demand growth caused by the intensive cold air, and the possible
		decrease of energy output from pumped storage hydro power plants.
	Date	February 1, 2018 at 15:27 & 16:23
		• Hokkaido EPCO shall supply 100 MW of electricity at most to TEPCO PG from 17:00 till 24:00 on
		February 1.
		• Tohoku EPCO shall supply 1,600 MW of electricity at most to TEPCO PG from 16:00 till 24:00 on
		February 1.
vi	Instruction	• Chubu EPCO shall supply 500 MW of electricity at most to TEPCO PG from 16:00 till 24:00 on
&.	instruction	February 1.
vii		• The Kansai EPCO shall supply 500 MW of electricity at most to TEPCO PG from 17:00 till 24:00 on
, 11.		February 1.
		• TEPCO PG shall be supplied 2,630 MW of electricity at most by Hokkaido, Tohoku, Chubu, and the
		Kansai EPCO from 16:00 till 24:00 on February 1.
		The supply-demand status may degrade without power exchanges through cross-regional
	Background	interconnection lines because of demand growth caused by the intensive cold air, and the possible
		decrease of energy output from pumped storage hydro power plants.
	Date	February 1, 2018 at 21:44
		• Hokkaido EPCO shall supply 100 MW of electricity at most to TEPCO PG from 0:00 till 7:00 on
		February 2.
		• Tohoku EPCO shall supply 1,500 MW of electricity at most to TEPCO PG from 0:00 till 7:00 on
		February 2.
	Instruction	• Chubu EPCO shall supply 500 MW of electricity at most to TEPCO PG from 0:00 till 7:00 in February 2.
viii.		• The Kansai EPCO shall supply 1,000 MW of electricity at most to TEPCO PG from 0:00 till 7:00 on
		February 2.
		\cdot TEPCO PG shall be supplied 2,500 MW of electricity at most by Hokkaido, Tohoku, Chubu, and the
		Kansai EPCO from 0:00 till 7:00 on February 2.
		The supply-demand status may degrade without power exchanges through cross-regional
	Background	interconnection lines because of demand growth caused by the intensive cold air, and the possible
		decrease of energy output from pumped storage hydro power plants.

Table 1-11(continued): Actual Power Exchange Instructions by the Organization (FY 2017)

Table 1-11 (continued): Actual Power Exchange Instructions by the Organization (FY 201	Table 1-11(co	ntinued): Actua	Power Exchange	Instructions by	v the O	rganization ((FY 2017)
--	---------------	-----------------	----------------	-----------------	---------	---------------	-----------

	Date	February 2, 2018 at 00:39
		• Hokkaido EPCO shall supply 150 MW of electricity at most to TEPCO PG from 7:00 till 22:00 on
		 • Tohoku EPCO shall supply 2,000 MW of electricity at most to TEPCO PG from 7:00 till 24:00 on Fobruary 2
	Instruction	 Chubu EPCO shall supply 500 MW of electricity at most to TEPCO PG from 7:00 till 23:00 on February 2
ix.		 The Kansai EPCO shall supply 200 MW of electricity at most to TEPCO PG from 7:00 till 23:00 on February 2.
		• TEPCO PG shall be supplied 2,000 MW of electricity at most by Hokkaido, Tohoku, Chubu, and the Kansai EPCO from 7:00 till 24:00 on February 2.
	Background	The supply-demand status may degrade without power exchanges through cross-regional interconnection lines because of demand growth caused by the intensive cold air, and the possible decrease of energy output from pumped storage hydro power plants.
	Date	February 22, 2018 at 15:48
		· Hokkaido EPCO shall supply 50 MW of electricity at most to TEPCO PG from 17:00 till 22:00 on
		February 22.
		• Tohoku EPCO shall supply 700 MW of electricity at most to TEPCO PG from 16:00 till 22:00 on February 22
		• Chubu EPCO shall supply 400 MW of electricity at most to TEPCO PG from 16:00 till 22:00 on
		February 22.
v	Instruction	• Hokuriku EPCO shall supply 38 MW of electricity at most to TEPCO PG from 19:30 till 20:00 on
л.		February 22.
		\cdot The Kansai EPCO shall supply 1,200 MW of electricity at most to TEPCO PG from 16:00 till 22:00 on
		February 22.
		• TEPCO PG shall be supplied 2,020 MW of electricity at most by Hokkaido, Tohoku, Chubu,
		Hokuriku, and the Kansai EPCO from 16:00 till 22:00 on February 22.
		The supply-demand status may degrade without power exchanges through cross-regional
	Background	interconnection lines because of demand growth caused by the intensive cold air, and the possible
		decrease of energy output from pumped storage hydro power plants.

10. Output Shedding of Renewable Energy-generating Facilities Operated by the Electric Power Companies other than GT&D Companies

GT&D companies may order renewable energy-generating facilities from other electric power companies to shed their output in case of expected oversupply to the demand for its regional service areas after shedding the output of generators other than renewable energy-generating facilities of the GT&D company according to the provision of the 'Ministerial Ordinance of Act on Special Measures Concerning Procurement of Electricity from Renewable Energy Sources by Electric Utilities.' Table 1-12 shows the actual output shedding of renewable energy-generating facilities in FY 2017.

Month/Year	Regional Service Area	Output Shedding Period		Total Capacity	Background
				Shed	
April, 2017	Kyushu EPCO	Saturday, April 1	from 9:00	1,280 kW	Possible
	(Tanegashima Island)	Sunday, April 2	till 16:00	2,150 kW	insufficiency
		Monday, April 3		1,470 kW	of ability to
		Tuesday, April 4		580 kW	reduce power
		Wednesday, April 12		1,840 kW	${\rm supply}^{*1} {\rm is}$
		Thursday, April 13		1,670 kW	expected.
		Friday, April 14		1,760 kW	
		Wednesday, April 19		$2,350~\mathrm{kW}$	
		Sunday, April 23		2,360 kW	
		Friday, April 28		2,280 kW	
		Saturday, April 29		2,430 kW	
		Sunday, April 30		2,800 kW	
	Kyushu EPCO	Wednesday, April 12	from 9:00	420 kW	
	(Iki Island)	Friday, April 14	till 16:00	820 kW	
		Wednesday, April 19		1,070 kW	
		Saturday, April 22		1,190 kW	
		Sunday, April 23		1,370 kW	
		Monday, April 24		$750 \mathrm{kW}$	
		Friday, April 28		980 kW	
		Saturday, April 29		$1,250~\mathrm{kW}$	
		Sunday, April 30		1,910 kW	
	Kyushu EPCO	Saturday, April 29	from 9:00	660 kW	
	(Tokunoshima Island)	Sunday, April 30	till 16:00	390 kW	

 Table 1-12: Actual Output Shedding of Renewable Energy-generating Facilities (FY 2017)

Month/Year	Regional Service Area	Output Shedding Period		Total Capacity	Background
				Shed	
May, 2017	Kyushu EPCO	Thursday, May 11	from 9:00	970 kW	Possible
	(Tanegashima Island)	Sunday, May 14	till 16:00	1,800 kW	insufficiency
		Thursday, May 18		1,080 kW	of ability to
		Friday, May 19		1,100 kW	reduce
		Saturday, May 20		730 kW	power
	Kyushu EPCO	Saturday, May 6	from 9:00	1,160 kW	$\operatorname{supply}^{*1} \operatorname{is}$
	(Iki Island)	Sunday, May 7	till 16:00	1,900 kW	expected.
		Sunday, May 14		1,240 kW	
		Wednesday, May 17		$550 \mathrm{~kW}$	
		Thursday, May 18		1,090 kW	
		Friday, May 19		790 kW	
		Monday, May 22		140 kW	
		Friday, May 26		390 kW	
		Saturday, May 27		390 kW	
		Sunday, May 28		690 kW	
November,	Kyushu EPCO	Saturday, November 4	from 9:00	1,700 kW	
2017	(Tanegashima Island)	Saturday, November 11	till 16:00	$550 \mathrm{~kW}$	
		Sunday, November 19		1,240 kW	
		Thursday, November 23		1,410 kW	
	Kyushu EPCO	Sunday, November 5	from 9:00	370 kW	
	(Iki Island)		till 16:00		
December,	Kyushu EPCO	Saturday, December 23	from 9:00	410 kW	
2017	(Tanegashima Island)		till 16:00		
January,	Kyushu EPCO	Monday, January 1	from 9:00	1,470 kW	
2018	(Tanegashima Island)	Tuesday, January 2	till 16:00	820 kW	
		Saturday, January 6		110 kW	
		Thursday, January 18		960 kW	
		Saturday, January 20		1,700 kW	
February,	Kyushu EPCO	Saturday, February 17	from 9:00	2,530 kW	
2018	(Tanegashima Island)	Sunday, February 18	till 16:00	1,670 kW	
		Friday, February 23		1,890 kW	
		Monday, February 26		2,370 kW	
		Tuesday, February 27		880 kW	

Table 1-12(continued): Actual Output Shedding of Renewable Energy-generating Facilities (FY 2017)

Month/Year	Regional Service Area	Output Shedding Period		Total Capacity	Background
				Shed	
March,	Kyushu EPCO	Thursday, March 1	from 9:00	1,820 kW	Possible
2018	(Tanegashima Island)	Tuesday, March 6	till 16:00	980 kW	insufficiency
		Friday, March 9		2,790 kW	of ability to
		Saturday, March 10		2,930 kW	reduce
		Sunday, March 11		4,100 kW	power
		Monday, March 12		530 kW	$supply^{*1}$ is
		Tuesday, March 13		1,890 kW	expected.
		Wednesday, March 14		3,270 kW	
		Saturday, March 17		860 kW	
		Thursday, March 22		150 kW	
		Friday, March 23		1,420 kW	
		Saturday, March 24		4,520 kW	
		Sunday, March 25		2,180 kW	
		Monday, March 26	Monday, March 26		
		Tuesday, March 27		$1,250~\mathrm{kW}$	
		Wednesday, Mar. 28		1,730 kW	
		Thursday, March 29		3,830 kW	
		Friday, March 30		1,130 kW	
		Saturday, March 31		1,830 kW	
	Kyushu EPCO	Saturday, March 24	from 9:00	190 kW	
	(Iki Island)	Friday, March 30	till 16:00	1,130 kW	
		Saturday, March 31		930 kW	
	Kyushu EPCO	Saturday, March 24	from 9:00	260 kW	
	(Tokunoshima Island)	Sunday, March 25	till 16:00	150 kW	

Table 1-12(continued): Actual Out	put Shedding of Renewable Energy	v-generating Facilities (FY 2017)
14010 1 12(001111404)(110044)		

*1 "Insufficient ability to reduce the power supply" describes the case where "balancing capacity for redundancy"*² becomes insufficient in regional service areas, and members who are GT&D companies cannot resolve the electricity surplus even by suppressing the output from power generators that cannot be adjusted online.

*2 "Balancing capacity for redundancy" describes the balancing capacity to suppress supply or increase the demand for electricity when the amount of supply exceeds the demand in regional service areas.

CHAPTER II: ADTUAL UTILIZATION OF CROSS-REGIONAL INTERCONNECTION LINES

1. Cross-regional Interconnection Lines and their Management

(1) Cross-regional Interconnection Lines

"Cross-regional interconnection lines" describes transmission lines with 250 kV or more and AC/DC convertors that firmly connect the regional service areas of members who are GT&D companies. Electric power supply outside each service area is made available through the interconnection lines. The Organization directs members to supply electricity through the cross-regional interconnection lines and secure the supply-demand balance at the insufficient supply capacity for each regional service area. Figure 2-1 and Table 2-1 show the cross-regional interconnection lines in Japan.

Interconnection Lines	Areas • Directions				Corresponding Facilities	AC/DC
Interconnection facilities between	Forward	Hokkaido	\rightarrow	Tohoku	HalthaidarHanshu WDC Link	DC
Hokkaido and Honshu	Counter	Tohoku	\rightarrow	Hokkaido	Hokkado Honshu HvDC Link	DC
Interconnection line between	Forward	Tohoku	\rightarrow	Tokyo	Some-Futche hullt line	
Tohoku and Tokyo	Counter	Tokyo	\rightarrow	Tohoku	Soma Futaba bulk line	AC
Interconnection facilities	Forward	Tokyo	\rightarrow	Chubu	Sakuma FC	DC
between Tokyo and Chubu	Counter	Chubu	\rightarrow	Tokyo	Higashi Shimizu FC	DC
Interconnection line between	Forward	Chubu	\rightarrow	Kansai	Mia-Higashi Omi lina	
Chubu and Kansai	Counter	Kansai	\rightarrow	Chubu	Mie-Higashi Omi line	AC
Interconnection facilities	Forward	Chubu	\rightarrow	Hokuriku	Interconnection facilities of Minami Fukumitsu	DC
between Chubu and Hokuriku	Counter	Hokuriku	\rightarrow	Chubu	HVDC BTB C.S.and Minami Fukumitsu Substation	DC
Interconnection line between	Forward	Hokuriku	\rightarrow	Kansai	Fakiron-Dair on line	
Hokuriku and Kansai	Counter	Kansai	\rightarrow	Hokuriku	Echizen-Keinan line	AU
Interconnection lines between	Forward	Kansai	\rightarrow	Chugoku	Seiban-Higashi Okayama line,	
Kansai and Chugoku	Counter	Chugoku	\rightarrow	Kansai	Yamazaki-Chizu line	AU
Interconnection facilities	Forward	Kansai	\rightarrow	Shikoku	Interconnection facilities between	DC
between Kansai and Shikoku	Counter	Shikoku	\rightarrow	Kansai	Kihoku and Anan AC/DC C.S.	DC
Interconnection line between	Forward	Chugoku	\rightarrow	Shikoku	Hanshi interconnection line	
Chugoku and Shikoku	Counter	Shikoku	\rightarrow	Chugoku	fionsm interconnection line	AU
Interconnection line between	Forward	Chugoku	\rightarrow	Kyushu	Konmon interconnection line	
Chugoku and Kyushu	Counter	Kyushu	\rightarrow	Chugoku	Kanmon interconnection line	AC

Table 2-	1: Summary	of Cross-	-regional	Interconnection	Lines
	2		<u> </u>		

(2) Management of Cross-regional Interconnection Lines

The Organization manages the interconnection lines according to the Operational Rules using the following procedures.

(a) Establishment of Total Transfer Capability (TTC)^{*1} and Transmission Margin^{*2}

Figure 2-2: Management of Interconnection Lines

- (b) Management of Scheduled Power Flow (SPF) of Interconnection Line
- i. The Organization receives the submission of a plan specifying the capability to utilize the desired interconnection line (hereinafter, request plan) and deliver them to the GT&D companies related to the relevant interconnection lines (hereinafter, relevant GT&D companies).
- ii. The Organization judges whether the request plans of the interconnection line are acceptable for registration for the scheduled power flow^{*3} (such judgment shall be called "determination of transfer capability allocation" hereinafter). There are "forward flows" and "counter flows" in the "capability allocation plan." However, the actual flows on the transmission lines are offset in each direction. Thus, scheduled power flows are the offset figure between forward flows and counter flows, not the simple addition of each direction.
- iii. When the Organization determines that the requested plans of the interconnection lines are acceptable for transmission after determining the transfer-capability allocation, it registers such plans for a scheduled power flow (called "capability registration").
- iv. When the Organization conducts capability registration, it notifies the applicants for interconnection use and the relevant GT&D companies (requested plan for the interconnected lines on which capability registration was conducted shall be called the "capability allocation plan of the interconnection lines").
- (c) Revision and Change in the Capability Allocation Plan
- (d) Congestion^{*5} Management

When congestion occurs on the interconnection line, the Organization takes steps to dissolve the congestion by following capability allocation plans and the reported figures registered for a scheduled power flow. When the Organization manages the congestion, it notifies the interconnection line users with a decreased capability allocation plan for the interconnection line or reported figures, and the relevant GT&D companies about the decreased line cross-section and capability.

*1 TTC describes the maximum electricity that can be sent to the distribution facilities while securing supply reliability without damaging the transmission and distribution facilities.

Transmission margin" describes the electricity capability managed by the Organization as a part of the TTC of the interconnection lines to receive electricity from other regional service areas through the interconnection lines under abnormal states of the electric network, supply shortages or other emergent states, to ensure that the electric network remains stabilized, or to develop a market trading environment for electricity.

- *3 "Scheduled power flow" describes the electricity capacity managed by the Organization as the total capability registered by interconnection line users.
- *4 "Available transfer capability" (ATC) describes the TTC of the interconnection lines managed by the Organization minus the capability secured for transmission margin, scheduled power flow, and cross-regional frequency control. *5 "Congestion" refers to the condition where the ATC becomes negative.

Management as needed

2. Actual Utilization of Cross-regional Interconnection Lines

The following are the actual utilization of cross-regional interconnection lines that are managed according to the provision of Article 124 of the Operational Rules.

(1) Actual Utilization of Cross-regional Interconnection Lines in FY 2017

Table 2-2 and Figure 2-4 show the monthly utilization of cross-regional interconnection lines for regional service areas in FY 2017.

														[GWh]
		Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Annual
Hokkaido	→Tohoku (Forward)	39	14	11	44	20	12	13	4	14	62	103	3	340
Honshu	→Hokkaido (Counter)	140	111	125	137	95	69	40	91	123	122	110	107	1,270
Tohoku-	→Tokyo (Forward)	1,557	2,038	2,242	2,840	2,837	2,212	2,082	2,098	2,410	3,002	2,381	2,538	28,238
Tokyo	→Tohoku (Counter)	467	462	467	636	586	546	574	688	784	705	702	457	7,071
Tokyo-	→Chubu (Forward)	118	96	164	167	326	222	267	369	587	688	644	306	3,954
Chubu	→Tokyo (Counter)	372	306	449	424	513	490	442	336	338	433	601	623	5 <i>,</i> 328
Chubu-	→Kansai (Forward)	277	388	650	514	629	522	517	774	1,040	948	1,031	816	8,106
Kansai	→Chubu (Counter)	693	594	719	847	1,010	912	893	776	815	842	866	924	9 <i>,</i> 889
Chubu-	→Hokuriku (Forward)	28	2	55	8	24	8	12	18	23	72	75	27	353
Hokuriku	→Chubu (Counter)	14	4	7	2	7	6	9	10	10	12	12	15	108
Hokuriku	→Kansai (Forward)	102	120	93	193	406	490	352	306	204	242	175	265	2,949
Kanasai	→Hokuriku (Counter)	122	42	219	115	71	38	41	48	108	162	172	123	1,260
Kansai-	→Chugoku (Forward)	103	137	275	278	236	280	242	281	685	638	657	680	4,493
Chugoku	→Kansai (Counter)	1,556	1,352	1,424	1,565	1,677	1,506	1,462	1,230	1,250	1,285	1,089	1,330	16,727
Kansai-	→Shikoku (Forward)	0	0	0	0	0	0	0	0	0	0	0	1	1
Shikoku	→Kansai (Counter)	481	480	716	983	899	953	983	932	940	928	740	476	9,510
Chugoku-	→Shikoku (Forward)	205	164	261	373	342	217	278	323	541	511	431	414	4,061
Shikoku	→Chugoku (Counter)	688	650	640	739	864	786	653	584	592	555	419	370	7,540
Chugoku-	→Kyushu (Forward)	116	111	259	295	279	320	228	252	292	216	284	362	3,014
Kyushu	→Chugoku (Counter)	1,456	1,139	1,377	1,722	1,700	1,380	1,470	1,408	1,649	1,698	1,566	1,618	18,183

Table 2-2: Monthly Utilization of Cross-regional Interconnection Lines for Regional Service Areas (FY 2017)

* Based on the scheduled power flows of cross-regional interconnection lines. The values are shown before offsetting is performed.

* The values in red are the annual maximum capabilities and the values in blue are the annual minimum capabilities for each line and direction, respectively.

Figure 2-4: Monthly Utilization of Cross-regional Interconnection Lines for Regional Service Areas (FY 2017)

(2) Actual Utilization of Cross-regional Interconnection Lines for FY 2010-2017

Table 2-3 and Figure 2-5 show the annual utilization of cross-regional interconnection lines for regional service areas for FY 2010–2017.

		FY 2010	FY 2011	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016	[GWN] FY 2017
Hokkaido-	→Tohoku (Forward)	972	3,925	214	182	143	146	237	340
Honshu	→Hokkaido (Counter)	12	7	673	505	617	804	1,033	1,270
Tohoku-	→Tokyo (Forward)	27,519	9,454	16,084	22,450	21,273	22,587	23,097	28,238
Tokyo	→Tohoku (Counter)	12,219	5,674	4,520	3,891	4,029	3,714	4,660	7,071
Tokyo-	→Chubu (Forward)	188	1,151	1,579	2,829	2,702	693	2,729	3,954
Chubu	→Tokyo (Counter)	1,271	2,426	1,288	536	2,755	4,513	5,144	5 <i>,</i> 328
Chubu-	→Kansai (Forward)	943	3,734	7,487	7,049	7,131	3,412	5,538	8,106
Kansai	→Chubu (Counter)	10,721	8,403	5,726	4,928	6,342	7,577	6,544	9,889
Chubu-	→Hokuriku (Forward)	117	169	452	170	231	108	241	353
Hokuriku	→Chubu (Counter)	2,310	130	183	310	296	172	59	108
Hokuriku-	→Kansai (Forward)	4,957	1,127	1,590	1,406	2,265	2,047	2,033	2,949
Kanasai	→Hokuriku (Counter)	2,850	730	464	587	491	502	640	1,260
Kansai-	→Chugoku (Forward)	1,423	1,483	2,836	2,326	2,252	948	716	4,493
Chugoku	→Kansai (Counter)	7,916	10,520	6,788	5,468	5,994	9,138	13,179	16,727
Kansai-	→Shikoku (Forward)	0	0	208	0	1	2	2	1
Shikoku	→Kansai (Counter)	9,299	9,810	8,938	9,073	9,362	9,611	8,856	9,510
Chugoku-	→Shikoku (Forward)	2,502	3,475	3,575	3,583	2,677	3,423	3,294	4,061
Shikoku	→Chugoku (Counter)	7,496	6,727	3,564	3,694	3,912	4,631	7,638	7,540
Chugoku-	→Kyushu (Forward)	903	2,582	4,210	3,838	3,596	2,174	1,935	3,014
Kyushu	→Chugoku (Counter)	13,095	13,905	13,596	13,847	11,218	14,947	15,476	18,183

Table 2-3 Annual Utilization of Cross-regional Interconnection Lines for Regional Service Areas (FY 2010–2017)

.

* Based on the scheduled power flows of cross-regional interconnection lines

* The value in red is the annual maximum capability and the value in blue is the annual minimum capability in each line and direction for 8 years, respectively.

Hallaida				2.025						IGWhI
Honshu		4,500		3,925						
101010	- 1 1	3,000	972	-	673	505	617	004	1 033	1,270
	→Tohoku	1,500	12	7	214	<u> </u>	143	146	237	340
	→Haldraida	0		FV 2011	EV 201 2	EV 2012	FV 2014	EV 201 F	EV 201 C	EV 2017
			FY 2010	FY 2011	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016	FY 2017
Tohoku-		20.000	27,519							28,238
Tokyo		20,000	_	9,454	16,084	22,450	21,273	22,587	23,097	
	→Tokyo	10.000	12,219	5,674	4,520	<u>3,891</u>	1.020		4,660	7,071
		0					4,029	3,714		
	→Tohoku		FY 2010	FY 2011	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016	FY 2017
Tokyo-		6.000							5 1//	5 3 2 8
Chubu		6,000 -		2.426	1 579		2 755	4 <u>,51</u> 3	,	3,954
	→Chubu	4,000 -	1 271	1 151	1 299	2,829	2,702		2,72 <mark>9</mark>	
		2,000 -	188	1,131	1,200	536		693		_
	→Tokyo	0 -	514 201 0	51/ 2014	51/ 2012	514 201 2	51/ 201 4	51/ 201 5	51/ 201 6	
~			FY 2010	FY 2011	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016	FY 2017
Chubu-Kans	sa1	15,000	10,721	8 403	7 407	7.040	7 131	7 577	6 544	9,889
	→Kansai	10,000		3.734	<u>5,726</u>	4.928	6,342	3.412	5 538	8,100
	'Kalisal	5,000	943		_		_	3,112		_
	→Chubu	0	EV 2010	EV 2011	EV 2012	EV 2013	EV 2014	EV 2015	EV 2016	EV 2017
			11 2010	11 2011	11 2012	11 2015	11 2014	11 2013	112010	11 2017
Chubu-Hoka	uriku	3,000	2 210							
		2,000	2,310							
	→покипки	1,000	117	169130	<u>452</u> 183	170310	231 296	100 172	241 го	108
	→Chuhu	0	117	105 150		170	231	108		100
			FY 2010	FY 2011	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016	FY 2017
Hokuriku-Ka	ansai	6,000	4,957							
		4,000	2,850		1 500	1.100	2 265	2.047	2.022	2,949
	→Kansai	2,000	_	1,127	1,590	1,406	491	2,047	2,033	1,260
	→Holaurilau	0		150	101		191	302		
	TIORGIIKG		FY 2010	FY 2011	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016	FY 2017
Kansai-		20.000							40.470	16,727
Chugoku		15,000	7,916	10,520	6 788	5 468	5 994	0 1 2 9	13,179	
	→Chug oku	10,000	1,423	1,483	2,836	2,326	2,252	9,138		4,49 <mark>3</mark>
		0						948	716	
	→Kansai		FY 2010	FY 2011	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016	FY 2017
Kansai-		15 000								
Shikoku		10,000	9,299	9,810	8,938	9,073	9,362	9,611	8,856	9,510
	→Shikoku	5,000								
		0,000	0	0	208	0	1	2	2	1
	→Kansaı	Ū	FY 2010	FY 2011	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016	FY 2017
Chug oku-		0.000	7 /96						7 638	7 540
Shikoku		9,000 -	,4.70	6,727	3,575	3.694	3.912	4,631	,0 <u>0</u>	4,061
	→Shikoku	6,000 -	2,50 <mark>2</mark>	3 <u>,47</u> 5	3,564	3,583	2,677	3,423	3,29 <mark>4</mark>	
		3,000 -								
	→Chug oku	0 -	FY 2010	FY 2011	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016	FY 2017
Chug oku-										
Kyushu	,	20,000							15 470	18,183
	→Kvushu	10.000	13,095	13,905	13,596	13,847	11,218	14,947	15,476	
		10,000	903	2,58 <mark>2</mark>	4,210	3,83 <mark>8</mark>	3,59 <mark>6</mark>	2,174	1,935	3,01 <mark>4</mark>
	→Chug oku	0								
			EV 2010	FY 2011	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016	EY 2017

Figure 2-5: Annual Utilization of Cross-regional Interconnection Lines for Regional Service Areas (FY 2010–2017)

(3) Monthly Utilization of Cross-regional Interconnection Lines by Transaction in FY 2017

Table 2-4 shows the monthly utilization of cross-regional interconnection lines by transaction in FY 2017.

													L - 1
	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Annual
Bilateral	7,099	7,022	8,542	9,735	9,954	8,924	8,873	8,777	10,522	11,030	9,939	9,424	109,842
Day-ahead	1,026	937	1,290	1,634	2,064	1,753	1,416	1,448	1,585	1,685	1,722	1,792	18,350
1 Hour-ahead	412	249	321	513	502	290	271	304	297	405	397	241	4,203

[GWh]

Table: 2-4 Monthly Utilization of Cross-regional Interconnection Lines by Transaction (FY 2017)

* The values in red are the annual maximum capability and the values in blue are the annual minimum capability, respectively.

(4) Annual Utilization of Cross-regional Interconnection Lines by Transaction for FY 2010–2017

Table 2-5 and Figures 2-6, 2-7, and 2-8 show the annual utilization of cross-regional interconnection lines by transaction for FY 2010–2017.

Table 2-5: Annual Utilization of Cross-regional Interconnection Lines by Transaction (FY 2010–2017) [Gwh]

	FY 2010	FY 2011	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016	FY 2017
Bilateral	100,444	79 <i>,</i> 693	76,328	73,289	71,558	75,947	84,843	109,842
Day-ahead	6,251	5,718	7,155	11,632	14,174	13,152	14,817	18,350
1 Hour-ahead	2	22	493	1,750	1,554	2,050	3,392	4,203

* "Hour-ahead" describes the transaction that is 4 hours ahead of the gate closure by FY 2015. From FY 2016, it refers to the transaction that is 1 hour ahead of the gate closure.

Figure 2-6: Annual Utilization of Cross-regional Interconnection Lines by Bilateral Transaction (FY 2010-2017)

Figure 2-7: Annual Utilization of Cross-regional Interconnection Lines by Day-ahead Transaction (FY 2010-2017)

Figure 2-8: Annual Utilization of Cross-regional Interconnection Lines by Hour-ahead Transaction (FY 2010-2017)

3. Congestion Management and Constraints of Cross-regional Interconnection Lines

The following are the actual congestion management and constraints of cross-regional interconnection lines implemented according to the provision of Article 143 of the Operational Rules.

(1) Monthly Congestion Management of Cross-regional Interconnection Lines by Weekly Plan Submission in FY 2017

Table 2-6 shows the monthly congestion management of cross-regional interconnection lines by weekly plan submissions in FY 2017.

Interconnection	Weekly Plan Submission	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Annual
Hokkaido-	Total	28	155	56	40	746	624	825	677	761	807	40	79	4,836
Honshy	Before Submission	0	120	56	40	480	562	604	0	0	744	0	0	2,606
Holisliu	After Submission	28	35	0	0	266	62	221	677	761	63	40	79	2,230
Tohoku	Total	0	0	0	0	0	0	44	60	20	0	0	1	125
Tolavo	Before Submission	0	0	0	0	0	0	44	60	20	0	0	0	124
Токуо	After Submission	0	0	0	0	0	0	0	0	0	0	0	1	1
Tokyo-	Total	1,708	2,157	2,081	2,063	1,062	1,625	1,526	3,320	4,013	3,223	3,438	4,376	30,589
Chubu	Before Submission	536	808	630	960	744	126	572	704	384	0	0	170	5,634
Chubu	After Submission	1,172	1,349	1,451	1,103	318	1,499	954	2,616	3,629	3,223	3,438	4,206	24,955
Chubu-	Total	0	0	0	0	0	0	0	0	0	19	23	343	384
Kansai	Before Submission	0	0	0	0	0	0	0	0	0	0	0	0	0
Kalisai	After Submission	0	0	0	0	0	0	0	0	0	19	23	343	384
Chubu-	Total	0	0	0	0	0	0	0	0	0	0	0	0	0
Hokuriku	Before Submission	0	0	0	0	0	0	0	0	0	0	0	0	0
HOKUIIKU	After Submission	0	0	0	0	0	0	0	0	0	0	0	0	0
Hokuriku	Total	0	0	0	0	0	0	0	0	0	0	0	0	0
Konsoi	Before Submission	0	0	0	0	0	0	0	0	0	0	0	0	0
Kalisai	After Submission	0	0	0	0	0	0	0	0	0	0	0	0	0
Kansai	Total	0	0	0	0	0	0	0	5	0	0	0	0	5
Chugola	Before Submission	0	0	0	0	0	0	0	0	0	0	0	0	0
Спидоки	After Submission	0	0	0	0	0	0	0	5	0	0	0	0	5
Kancai	Total	0	0	0	0	0	0	0	0	0	0	0	0	0
Shikolar	Before Submission	0	0	0	0	0	0	0	0	0	0	0	0	0
SIIIKOKU	After Submission	0	0	0	0	0	0	0	0	0	0	0	0	0
Chugoku	Total	0	0	0	0	0	0	0	0	0	0	0	0	0
Shikola	Before Submission	0	0	0	0	0	0	0	0	0	0	0	0	0
SIIIKOKU	After Submission	0	0	0	0	0	0	0	0	0	0	0	0	0
Chugoku	Total	475	1,446	652	882	874	603	629	371	395	1,215	1,019	861	9,420
Vuushu	Before Submission	464	766	602	764	534	534	578	360	358	970	636	552	7,118
Kyushu	After Submission	11	680	50	118	340	69	51	11	37	245	383	309	2,302
		2,210	3,758	2,789	2,985	2,682	2,851	3,024	4,433	5,188	5,263	4,519	5,659	45,358
Nationwide	Before Submission	1,000	1,694	1,288	1,764	1,758	1,222	1,798	1,124	762	1,714	636	722	15,482
	After Submission	1,210	2,064	1,501	1,221	924	1,629	1,226	3,309	4,426	3,549	3,883	4,937	29,876

Table 2-6: Monthly Congestion Management of Cross-regional Interconnection Lines by Weekly Plan Submissions (FY 2017)

* The managed hours are collected as 30 minutes and rounded up to an hour.

* Total hours of allocation plans that managed to mitigate congestion.

(2) Annual Congestion Management of Cross-regional Interconnection Lines by Weekly Plan Submission for FY 2010–2017

Table 2-7 and Figure 2-9 show the annual congestion management of cross-regional interconnection lines by weekly plan submissions for FY 2010–2017.

					(1)	1 2010	-2017)							[n]
	Weekly Plan Submission	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Annual
FV	Total	2,210	3,758	2,789	2,985	2,682	2,851	3,024	4,433	5,188	5,263	4,519	5,659	45,358
2017	Before Submission	1,000	1,694	1,288	1,764	1,758	1,222	1,798	1,124	762	1,714	636	722	15,482
2017	After Submission	1,210	2,064	1,501	1,221	924	1,629	1,226	3,309	4,426	3,549	3,883	4,937	29,876
FY	Total	533	1,006	123	221	136	422	703	467	499	508	12	541	5,167
2016	Before Submission	533	763	0	144	130	310	582	208	476	506	0	431	4,083
2016	After Submission	0	243	123	77	6	112	121	259	23	2	12	110	1,085
FY	Total	1,175	3,858	1,293	761	791	996	1,396	854	946	774	723	1,275	14,840
2015	Before Submission	1,076	3,778	1,257	744	744	766	772	734	884	744	696	1,216	13,410
2013	After Submission	99	80	36	17	47	231	624	120	62	30	27	59	1,430
FY	Total	1,132	1,820	411	18	48	250	101	21	49	76	108	44	4,075
2014	Before Submission	898	1,701	256	0	12	82	30	0	0	0	0	0	2,978
2014	After Submission	234	120	155	18	36	168	71	21	49	76	108	44	1,097
FV	Total	1,106	1,189	134	3	19	94	873	0	10	474	205	16	4,121
2012	Before Submission	736	476	100	0	0	32	814	0	5	196	0	0	2,359
2015	After Submission	370	713	34	3	19	62	59	0	5	278	205	16	1,762
EV	Total	458	1,237	502	620	727	1,025	299	1,039	795	1	667	469	7,836
ГI 2012	Before Submission	234	1,032	0	0	0	447	198	808	698	0	667	420	4,503
2012	After Submission	224	205	502	620	727	578	101	231	97	1	0	49	3,333
EV	Total	142	771	994	604	1,236	757	657	296	524	444	2,071	1,622	10,114
F Y 2011	Before Submission	84	541	144	224	1,178	384	302	1	0	0	1,543	1,488	5,889
2011	After Submission	58	230	850	380	58	373	355	295	524	444	528	134	4,226
EV	Total	553	13	277	52	144	2	5	1	4	551	0	120	1,721
F I 2010	Before Submission	420	0	0	0	0	0	0	0	0	504	0	0	924
2010	After Submission	133	13	277	52	144	2	5	1	4	48	0	120	798

Table 2-7: Annual Congestion Management of Cross-regional Interconnection Lines by Weekly Plan Submissions (FY 2010–2017)

* The value in red is the annual maximum capability.

* The managed hours are collected as 30 minutes and rounded up to an hour.

* Total hours of utilization plans that managed to mitigate congestion.

* In-service dates of function for capability allocation plan revision of the Cross-regional Operation System are as below. 1. The function for revision of weekly capability allocation plan and its congestion management: September, 2016

2. The function for revision of monthly capability allocation plan and its congestion management: February, 2017

Figure 2-9: Annual Congestion Management of Cross-regional Interconnection Lines by Weekly Plan Submissions (FY 2010–2017)

(3) Monthly Congestion Management of Cross-regional Interconnection Lines by Constraints in FY 2017

Table 2-8 shows the monthly congestion management of cross-regional interconnection lines by constraints in FY 2017.

			C							5				[h]
Interconnection	Constraints	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Annual
Hokkaido	Total	28	155	56	40	746	624	825	677	761	807	40	79	4,836
Honshy	Over Capability	28	155	56	40	746	624	825	677	761	807	40	79	4,836
Holisliu	Minimum Flow	0	0	0	0	0	0	0	0	0	0	0	0	0
Tohoku-	Total	0	0	0	0	0	0	44	60	20	0	0	1	125
Tolavo	Over Capability	0	0	0	0	0	0	44	60	20	0	0	1	125
Токуо	Minimum Flow	0	0	0	0	0	0	0	0	0	0	0	0	0
Tokyo-	Total	1,708	2,157	2,081	2,063	1,062	1,625	1,526	3,320	4,013	3,223	3,438	4,376	30,589
Chubu	Over Capability	1,708	2,157	2,081	2,063	1,062	1,625	1,526	3,320	4,013	3,223	3,438	4,376	30,589
Cilubu	Minimum Flow	0	0	0	0	0	0	0	0	0	0	0	0	0
Chubu-	Total	0	0	0	0	0	0	0	0	0	19	23	343	384
Kansai	Over Capability	0	0	0	0	0	0	0	0	0	19	23	343	384
Kalisai	Minimum Flow	0	0	0	0	0	0	0	0	0	0	0	0	0
Chubu-	Total	0	0	0	0	0	0	0	0	0	0	0	0	0
Hokuriku	Over Capability	0	0	0	0	0	0	0	0	0	0	0	0	0
покинки	Minimum Flow	0	0	0	0	0	0	0	0	0	0	0	0	0
Hokuriku-	Total	0	0	0	0	0	0	0	0	0	0	0	0	0
Kansai	Over Capability	0	0	0	0	0	0	0	0	0	0	0	0	0
Kansai	Minimum Flow	0	0	0	0	0	0	0	0	0	0	0	0	0
Kansai-	Total	0	0	0	0	0	0	0	5	0	0	0	0	5
Chugoku	Over Capability	0	0	0	0	0	0	0	5	0	0	0	0	5
Спидоки	Minimum Flow	0	0	0	0	0	0	0	0	0	0	0	0	0
Kansai-	Total	0	0	0	0	0	0	0	0	0	0	0	0	0
Shikoku	Over Capability	0	0	0	0	0	0	0	0	0	0	0	0	0
ынкоки	Minimum Flow	0	0	0	0	0	0	0	0	0	0	0	0	0
Chugoku-	Total	0	0	0	0	0	0	0	0	0	0	0	0	0
Shikoku	Over Capability	0	0	0	0	0	0	0	0	0	0	0	0	0
Shikoku	Minimum Flow	0	0	0	0	0	0	0	0	0	0	0	0	0
Chugoku-	Total	475	1,446	652	882	874	603	629	371	395	1,215	1,019	861	9,420
Kyushu	Over Capability	475	1,446	652	882	874	603	629	371	395	1,215	1,019	861	9,420
Kyushu	Minimum Flow	0	0	0	0	0	0	0	0	0	0	0	0	0
		2,210	3,758	2,789	2,985	2,682	2,851	3,024	4,433	5,188	5,263	4,519	5,659	45,358
Nationwide	Over Capability	2,210	3,758	2,789	2,985	2,682	2,851	3,024	4,433	5,188	5,263	4,519	5,659	45,358
	Minimum Flow	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 2-8: Monthly Congestion Management of Cross-regional Interconnection Lines by Constraints (FY 2017)

* The managed hours are collected as 30 minutes and rounded up to an hour.

* Total hours of capability allocation plans that managed to mitigate congestion.

* "Congestion management for over capability" means the management implemented when the scheduled power flow reaches the maximum of available transfer capability of the interconnection line.

* "Congestion management for minimum flow" means the management implemented when the scheduled power flow goes below the minimum value of pass through the interconnection line.

(4) Annual Congestion Management of Cross-regional Interconnection Lines by Constraints for FY 2010–2017

Table 2-9 and Figure 2-10 show the annual congestion management of cross-regional interconnection lines by constraints for FY 2010–2017.

														[n]
	Constraints	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Annual
FV	Total	2,210	3,758	2,789	2,985	2,682	2,851	3,024	4,433	5,188	5,263	4,519	5,659	45,358
2017	Over Capability	2,210	3,758	2,789	2,985	2,682	2,851	3,024	4,433	5,188	5,263	4,519	5,659	45,358
2017	Minimum Flow	0	0	0	0	0	0	0	0	0	0	0	0	0
FV	Total	533	1,006	123	221	136	422	703	467	499	508	12	541	5,167
2016	Over Capability	533	1,006	123	221	136	422	703	467	499	508	12	541	5,167
2016	Minimum Flow	0	0	0	0	0	0	0	0	0	0	0	0	0
FV	Total	1,175	3,858	1,293	761	791	996	1,396	854	946	774	723	1,275	14,840
2015	Over Capability	1,175	2,437	1,293	761	791	863	1,233	854	946	774	723	1,275	13,123
2015	Minimum Flow	0	1,421	0	0	0	133	163	0	0	0	0	0	1,717
FV	Total	1,132	1,820	411	18	48	250	101	21	49	76	108	44	4,075
2014	Over Capability	990	1,661	411	18	48	192	73	21	49	76	108	44	3,688
2014	Minimum Flow	142	160	0	0	0	58	28	0	0	0	0	0	387
FV	Total	1,106	1,189	134	3	19	94	873	0	10	474	205	16	4,121
2012	Over Capability	928	853	134	3	19	94	324	0	10	474	205	16	3,058
2015	Minimum Flow	178	336	0	0	1	0	549	0	0	0	0	0	1,063
EV	Total	458	1,237	502	620	727	1,025	299	1,039	795	1	667	469	7,836
ГI 2012	Over Capability	457	1,160	496	324	511	928	0	325	675	0	667	469	6,010
2012	Minimum Flow	1	77	6	296	217	97	299	715	120	1	0	0	1,826
EV	Total	142	771	994	604	1,236	757	657	296	524	444	2,071	1,622	10,114
F I 2011	Over Capability	114	613	144	9	10	143	124	36	496	434	2,069	1,621	5,810
2011	Minimum Flow	29	158	850	595	1,226	614	534	260	28	10	2	1	4,304
EV	Total	553	13	277	52	144	2	5	1	4	551	0	120	1,721
2010	Over Capability	500	4	2	49	0	2	5	1	2	19	0	97	680
2010	Minimum Flow	53	9	276	3	144	0	0	0	2	532	0	24	1,042

Table 2-9 Annual Congestion Management of Cross-regional Interconnection Lines by the Constraints (FY 2010–2017)

* The value in red is the annual maximum capability.

* The managed hours are collected as 30 minutes and rounded up to an hour.

* Total hours of capability allocation plans that managed to mitigate congestion.

* In-service dates of function for capability allocation plan revision of the Cross-regional Operation System are as below.

1. The function for revision of weekly capability allocation plan and its congestion management: September, 2016

2. The function for revision of monthly capability allocation plan and its congestion management: February, 2017

Figure 2-10: Annual Congestion Management of Cross-regional Interconnection Lines by Constraints (FY 2010–2017)

4. Status of Maintenance Work of Cross-regional Interconnection Lines

The following are details of the actual maintenance work of cross-regional interconnection lines as reported by the GT&D companies according to the provision of Article 167 of the Operational Rules.

(1) Actual Monthly Maintenance Work of Cross-regional Interconnection Lines in FY 2017

Table 2-10 shows the monthly maintenance work of cross-regional interconnection lines in FY 2017, and Figure 2-11 shows the nationwide monthly planned outage rate in FY 2017.

																					~ (-			/			
		A	pr.	M	lay	Jı	ın.	J	ul.	Aı	1g.	Se	ep.	0	ct.	No	ov.	De	ec.	Ja	ın.	Fe	eb.	M	ar.	An	nual
Interconnection	Corresponding Facilities	Nos.	Days																								
Hokkaido- Honshu	Hokkaido and Honshu AC/DC C.S.	4	2	9	5			4	4			4	3	30	18	2	1									53	33
Tohoku-Tokyo	Soma-Futaba bulk line							6	6			2	1					1	1							9	8
	Sakuma FC C.S.	2	2									1	1			2	10							1	1	6	14
Tokyo-Chubu	Shin Shinano FC C.S.			7	9			1	1					6	18	2	2	1	1	1	2					18	33
	Higashi Shimizu FC C.S.					1	1									9	14	5	16					1	1	16	32
Chubu-Kansai	Mie-Higashi Omi line																							2	2	2	2
Chubu- Hokuriku	Minami Fukumitsu HVDC BTB C.S.and Minami Fukumitsu Substation											7	14													7	14
Hokuriku- Kansai	Echizen-Reinan line	10	20	6	29	6	6									2	2							2	11	26	68
Kansai- Chugoku	Seiban-Higashi Okayama line, Yamazaki-Chizu line	5	18	1	29	2	5	1	4			18	19	4	2	15	6	2	1							48	84
Kansai-Shikoku	Kihoku and Anan AC/DC C.S.	16	25	15	24	7	7															2	2	13	22	53	80
Chugoku- Shikoku	Honshi interconnection line	7	15	10	14									1	1	1	1							1	9	20	40
Chugoku- Kyushu	Kanmon interconnection line			8	22	1	2																			9	24
(Cumulativ	Nationwide e works for the same facilities deducted)	44	82	56	132	17	21	12	15	0	0	32	38	41	39	33	36	9	19	1	2	2	2	20	46	267	432

Table 2-10: Monthly Maintenance Work of Cross-regional Interconnection Lines (FY 2017)

Figure 2-11: Nationwide Monthly Planned Outage Rate (FY 2017)

* Monthly Planned Outage Rate (%) = $\frac{\text{Total days of planned outage in the month}}{10 \text{ interconnection lines } \times \text{ calendar days}}$

(2) Annual Maintenance Work for Cross-regional Interconnection Lines for FY 2010–2017

Table 2-11 shows the annual maintenance work of cross-regional interconnection lines for FY 2010–2017.

Table 2-11: Annual Maintenance Work of Cross-regional Interconnection Lines (FY 2010–2017)

	FY 2010	FY 2011	FY 2012	FY 2013	FY 2014	FY 2015	FY2016	FY 2017	Total	8-years Average
Number	64	56	58	38	63	91	218	267	855	107

* Significant increase from FY 2016 to 2017 is attributable to the introduction of Cross-regional Operation System which made detailed data management available.

5. Unplanned Outage of Cross-regional Interconnection Lines

(1) Unplanned Outage of Cross-regional Interconnection Lines in FY 2017

Table 2-12 shows the unplanned outage of cross-regional interconnection lines in FY 2017.

Date	Facility	Background
May 9	Hokkaido-Honshu HVDC Link	The converter station had maintenance work for replacing an information lock board. The information lock boad does not have device to collectively lock signals of maintenance work. The information lock has implemented as an ordinary condition; however, emergency stop signal has been sent and the station has tripped.
Jul. 14	Shin Shinano FC unit No.1 & 2	Secondary accident of network
Jul. 22	Shin Shinano FC unit No.2	Secondary accident of network

Table 2-12: Unplanned Outage of Cross-regional Interconnection Lines (FY 2017)

* The unplanned outage affecting TTC is described.

(2) Annual Unplanned Outage of Cross-regional Interconnection Lines for FY 2010–2017

Table 2-13 shows the annual unplanned outage of cross-regional interconnection lines for FY 2010–2017.

Table 2-13: Annual	Unplanned	Outage of	Cross-regional	Interconnection	Lines (F	Y 2010–2017)
--------------------	-----------	-----------	----------------	-----------------	----------	--------------

	FY 2010	FY 2011	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016	FY 2017	Total	8-years Average
Numbers	9	5	6	9	1	3	3	3	39	5

6. Actual Utilization of Transmission Margin

The "utilization of transmission margin" describes the supply of electricity by GT&D companies utilizing part of their transmission margin when there is no ATC on the interconnection lines that applicants for capability allocation wish to use. There was no actual utilization of transmission margin in FY 2017 according to the provision of Article 151 of the Operational Rules.

7. Actual Employment of Transmission Margin

The "employment of transmission margin" describes the supply of electricity by GT&D companies employing their transmission margin to interconnection lines where the supply–demand balance is restricted or insufficient to reduce power supply, or other such possibilities. Table 2-14 shows the actual employment of transmission margin for FY 2017 according to the provision of Article 152 of the Operational Rules.

Date	Facility	Background
Feb. 1	Interconnection Facilities between Tokyo and Chubu (Flow from Chubu to Tokyo)	Insufficient ATC of the corresponding facility in the regional service area of TEPCO PG which is subject to the instruction of power exchanges because of demand growth due to the intensive cold air, and the possible decrease of energy output from pumped storage hydro power plant.
Feb. 2	Interconnection Facilities between Tokyo and Chubu (Flow from Chubu to Tokyo)	Insufficient ATC of the corresponding facility in the regional service area of TEPCO PG which is subject to the instruction of power exchanges because of demand growth due to the intensive cold air, and the possible decrease of energy output from pumped storage hydro power plant.
Feb. 22	Interconnection Facilities between Tokyo and Chubu (Flow from Chubu to Tokyo)	Insufficient ATC of the corresponding facility in the regional service area of TEPCO PG which is subject to the instruction of power exchanges because of demand growth due to the intensive cold air, and the possible decrease of energy output from pumped storage hydro power plant.

Table 2-14: Actual Employment of Transmission Margin (FY 2017)

8. Actual Available Transfer Capabilities of each Cross-regional Interconnection Line

The actual available transfer capabilities (ATC) calculated and published according to Article 133 of the Operational Rules are shown in the following pages.

➢ How to read the graphs of actual ATC

Interconnection line is utilized according to the procedures described in 1(2) of Chapter II.

 $[(i) Calculation of TTC] \rightarrow [(ii) Calculation of Margin] \rightarrow [(iii) Registration of SPF] \rightarrow [(iv) Calculation of ATC]$

Figure 2-12: Concept of Utilization of Cross-regional Interconnection Lines

Graphs for the actual ATC of each interconnection line for FY 2017 are presented in the following pages based on the above concept. How to read the ATC graph is described below according to procedures (i) to (iv).

Figure 2-13: How to Read the Graphs of the Actual ATC

*The actual flows on the transmission lines are offset in each direction. Therefore, the scheduled power flow is the offset figure between forward and counter flows, not the simple addition of each direction. In addition, offset figures on the graphs are observed as SPF, not observing the capacity of each forward and counter flow, respectively.

(Reference) Publishing actual ATC

Detailed network system information including actual ATC is available at the URL below.

URL http://occtonet.occto.or.jp/public/dfw/RP11/OCCTO/SD/LOGIN_login#

Figure 2-14: Actual ATC of Interconnection Facilities between Hokkaido and Honshu (FY 2017) (Hokkaido and Honshu HVDC Link)

Note: Hokkaido to Tohoku as forward (positive) flow, Tohoku to Hokkaido as counter (negative) flow.

Figure 2-15: Actual ATC of Interconnection Line between Tohoku and Tokyo (FY 2017) (Soma-Futaba Bulk Line)

Note: Tohoku to Tokyo as forward (positive) flow, Tokyo to Tohoku as counter (negative) flow.

Figure 2-16: Actual ATC of Interconnection Facilities between Tokyo and Chubu (FY 2017) (Sakuma, Shin-Shinano & Higashi Shimizu F.C.)

Note: Tokyo to Chubu as forward (positive) flow, Chubu to Tokyo as counter (negative) flow.

Figure 2-17: Actual ATC of Interconnection Line between Chubu and Kansai (FY 2017) (Mie-Higashi Omi Line)

Note: Chubu to Kansai as forward (positive) flow, Kansai to Chubu as counter (negative) flow.

Note: Chubu to Hokuriku as forward (positive) flow, Hokuriku to Chubu as counter (negative) flow.

Figure 2-19: Actual ATC of Interconnection Line between Hokuriku and Kansai (FY 2017) (Echizen-Reinan Line)

Note: Hokuriku to Kansai as forward (positive) flow, Kansai to Hokuriku as counter (negative) flow.

Figure 2-20: Actual ATC of Interconnection Lines between Kansai and Chugoku (FY 2017) (Seiban-Higashi Okayama Line, Yamazaki-Chizu Line)

Note: Kansai to Chugoku as forward (positive) flow, Chugoku to Kansai as counter (negative) flow.

Figure 2-21: Actual ATC of Interconnection Facilities between Kansai and Shikoku (FY 2017) (Interconnection facilities between Kihoku and Anan AC/DC C.S.)

Note: Kansai to Shikoku as forward (positive) flow, Shikoku to Kansai as counter (negative) flow.

* ATC on forward flow is calculated and chosen from the smaller of those listed below.

 \cdot TTC – transfer margin – SPF

•TTC of Minami Awa Bulk Line — (Supply Capacity of Tachibanawan Thermal Power Station — SPF of Anan-Kihoku DC Bulk Line)

Figure 2-22: Actual ATC of Interconnection Line between Chugoku and Shikoku (FY 2017) (Honshi Interconnection Line)

Note: Chugoku to Shikoku as forward (positive) flow, Shikoku to Chugoku as counter (negative) flow.

Figure 2-23: Actual ATC of Interconnection Line between Chugoku and Kyushu (FY 2017) (Kanmon Interconnection Line)

Note: Chugoku to Kyushu as forward (positive) flow, Kyushu to Chugoku as counter (negative) flow.

9. Actual Constraints on Cross-regional Interconnection Lines Nationwide

Figure 2-24 shows the actual constraints on cross-regional interconnection lines nationwide. The constraint data are published at the end of May, reported to the Organization by GT&D companies, and compiled into a nationwide map by the Organization. Constraints on the subordinate lines are not shown in the map.

^{*} The map on the following page is prepared from the data posted on the websites below (in Japanese only). Hokkaido Electric Power Company : <u>http://www.hepco.co.jp/corporate/con_service/bid_info.html</u> Tohoku Electric Power Company : <u>http://www.tohoku-epco.co.jp/jiyuka/04.htm</u>

Tokyo Electric Power Company : <u>http://www.tepco.co.jp/pg/consignment/system/index-j.html</u>

Chubu Electric Power Company : <u>http://www.chuden.co.jp/corporate/study/free/rule/map/index.html</u>

Hokuriku Electric Power Company : <u>http://www.rikuden.co.jp/rule/U_154seiyaku.html</u>

The Kansai Electric Power Company : <u>http://www.kepco.co.jp/corporate/takusou/disclosure/ryutusetsubi.html</u> The Chugoku Electric Power Company : <u>http://www.energia.co.jp/retailer/keitou/access.html</u>

Shikoku Electric Power Company : <u>http://www.yonden.co.jp/business/jiyuuka/tender/index.html</u>

Kyushu Electric Power Company : <u>http://www.kyuden.co.jp/wheeling_disclosure</u>

The Okinawa Electric Power Company : <u>http://www.okiden.co.jp/business-support/service/rule/plan/index.html</u>

CONCLUSION

Actual Electricity Supply-Demand

For actual electricity supply-demand, data for peak demand, electric energy requirement, load factor, supply-demand status during the peak demand period, and the bottom demand period, and peak daily energy supply are collected. In addition, instructions of power exchange according to the provisions of paragraph 1 of Article 28-44 of the Electricity Business Act, and actual output shedding of renewable energy-generating facilities according to the provision of the 'Ministerial Ordinance of Act on Special Measures Concerning Procurement of Electricity from Renewable Energy Sources by Electric Utilities' are aggregated.

Actual Utilization of Cross-regional Interconnection Lines

For actual utilization of cross-regional interconnection lines, data for utilization, congestion management, maintenance work, unplanned outage, utilization and employment of transmission margin, and available transfer capability are collected. In addition, the Organization compiles the actual constraints on cross-regional interconnection lines into a nationwide constraint map based on the data of available transfer capability map published by GT&D companies (Left Blank)

Organization for Coordination of Cross-regional Transmission Operators, JAPAN General Affairs Dept. +813-6632-0902 http://www.occto.or.jp